

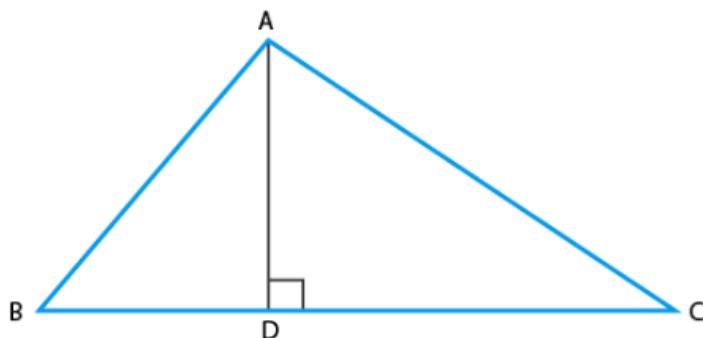
Chapter 6
Triangles

Exercise No. 6.1

Multiple Choice Questions:

Choose the correct answer from the given four options:

1. In figure, if $\angle BAC = 90^\circ$ and $AD \perp BC$. Then,



If the lengths of the diagonals of rhombus are 16 cm and 12 cm. Then, the length of the sides of the rhombus is

- (A) $BD \cdot CD = BC^2$
- (B) $AB \cdot AC = BC^2$
- (C) $BD \cdot CD = AD^2$
- (D) $AB \cdot AC = AD^2$

Solution:

$$(C) BD \cdot CD = AD^2$$

In $\triangle ADB$ and $\triangle ADC$,

We have,

$$\angle D = \angle A = 90^\circ$$

$$\angle DBA = \angle DAC$$

$$(\because AD \perp BC)$$

$$[\text{each angle} = 90^\circ - \angle C]$$

From AAA similarity rule,

$$\triangle ADB \sim \triangle ADC$$

Therefore,

$$\frac{BD}{AD} = \frac{AD}{CD}$$

$$BD \cdot CD = AD^2$$

2. If the lengths of the diagonals of rhombus are 16 cm and 12 cm. Then, the length of the sides of the rhombus is

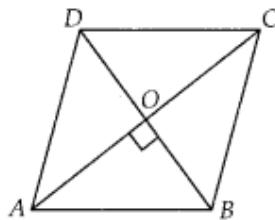
- (A) 9 cm
- (B) 10 cm
- (C) 8 cm
- (D) 20 cm

Solution:

(B) 10 cm

We have,

A rhombus is a simple quadrilateral whose four sides are of same length and diagonals are perpendicular bisector of each other.



Now,

$AC = 16 \text{ cm}$ and

$BD = 12 \text{ cm}$

$\angle AOB = 90^\circ$

AC and BD bisects each other

$$AO = \frac{1}{2} AC$$

$$BO = \frac{1}{2} BD$$

So,

$$AO = 8 \text{ cm}$$

$$BO = 6 \text{ cm}$$

In right angled $\triangle AOB$,

By Pythagoras theorem,

We have,

$$AB^2 = AO^2 + OB^2$$

$$AB^2 = 8^2 + 6^2$$

$$= 64 + 36$$

$$= 100$$

$$AB = \sqrt{100}$$

$$= 10 \text{ cm}$$

As the four sides of a rhombus are equal.

So, one side of rhombus = 10 cm.

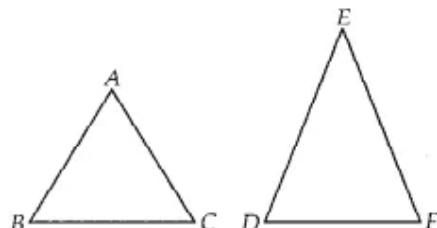
3. If $\Delta ABC \sim \Delta EDF$ and ΔABC is not similar to ΔDEF , then which of the following is not true?

- (A) $BC \cdot EF = AC \cdot FD$
- (B) $AB \cdot EF = AC \cdot DE$
- (C) $BC \cdot DE = AB \cdot EF$
- (D) $BC \cdot DE = AB \cdot FD$

Solution:

(C) $BC \cdot DE = AB \cdot EF$

If sides of one triangle are proportional to the side of the other triangle, and the corresponding angles are also equal, then the triangles are similar by SSS similarity.



So, $\Delta ABC \sim \Delta EDF$

By similarity rule,

$$\frac{AB}{ED} = \frac{BC}{DF} = \frac{AC}{EF}$$

At first we take,

$$\frac{AB}{ED} = \frac{BC}{DF}$$

$$\frac{AB}{ED} = \frac{BC}{DF}$$

$$AB \cdot DF = ED \cdot BC$$

Hence, option (D) $BC \cdot DE = AB \cdot FD$ is true

Now taking,

$$\frac{BC}{DF} = \frac{AC}{EF}, \text{ we get}$$

$$BC \cdot EF = AC \cdot DF$$

Hence, option (A) $BC \cdot EF = AC \cdot FD$ is true

Now if,

$$\frac{AB}{ED} = \frac{AC}{EF}, \text{ we get,}$$

$$AB \cdot EF = ED \cdot AC$$

Hence, option (B) $AB \cdot EF = AC \cdot DE$ is true.

4. If in two triangles ABC and PQR, $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$, then

- (A) $\Delta PQR \sim \Delta CAB$
- (B) $\Delta PQR \sim \Delta ABC$
- (C) $\Delta CBA \sim \Delta PQR$
- (D) $\Delta BCA \sim \Delta PQR$

Solution:

(A) $\Delta PQR \sim \Delta CAB$

We have, from ΔABC and ΔPQR ,

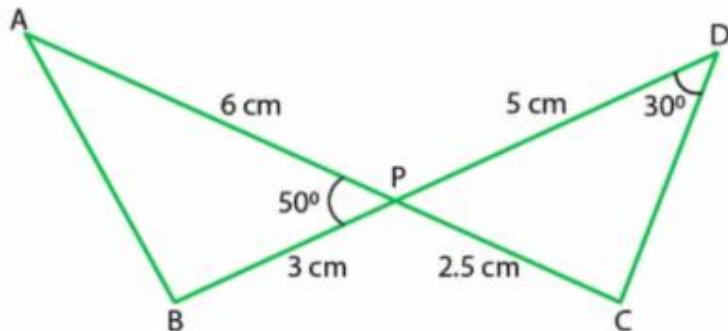
$$\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$$

If sides of one triangle are proportional to the side of the other triangle, and their corresponding angles are also equal, then both the triangles are similar by SSS similarity.

So, we can say that,

$\Delta PQR \sim \Delta CAB$

5. In fig. 6.3, two line segments AC and BD intersect each other at the point P such that $PA = 6 \text{ cm}$, $PB = 3 \text{ cm}$, $PC = 2.5 \text{ cm}$, $PD = 5 \text{ cm}$, $\angle APB = 50^\circ$ and $\angle CDP = 30^\circ$. Then, $\angle PBA$ is equal to



(A) 50°
 (B) 30°
 (C) 60°
 (D) 100°

Solution:

(D) 100°

In $\triangle APB$ and $\triangle CPD$,
 $\angle APB = \angle CPD = 50^\circ$ (vertically opposite angles)

$$\frac{AP}{PD} = \frac{6}{5} \quad \dots \text{(i)}$$

And,

$$\frac{BP}{CP} = \frac{3}{2.5}$$

$$\frac{BP}{CP} = \frac{6}{5} \quad \dots \text{(ii)}$$

From equations (i) and (ii),

$$\frac{AP}{PD} = \frac{BP}{CP}$$

Therefore,

$\triangle APB \sim \triangle DPC$ [using SAS similarity rule]

$$\angle A = \angle D = 30^\circ \quad [\text{Corresponding angles of similar triangles}]$$

As,

Sum of angles of a triangle = 180°

From $\triangle APB$,

$$\angle A + \angle B + \angle APB = 180^\circ$$

$$30^\circ + \angle B + 50^\circ = 180^\circ$$

$$\angle B = 180^\circ - (50^\circ + 30^\circ)$$

$$\angle B = 180^\circ - 80^\circ$$

$$= 100^\circ$$

So,

$$\angle PBA = 100^\circ$$

6. If in two triangles DEF and PQR, $\angle D = \angle Q$ and $\angle R = \angle E$, then which of the following is not true?

(A) $\frac{EF}{PR} = \frac{DF}{PQ}$

(B) $\frac{DE}{PQ} = \frac{EF}{RP}$

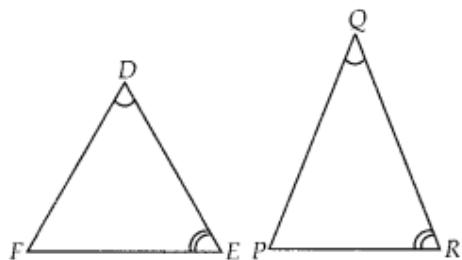
(C) $\frac{DE}{QR} = \frac{DF}{PQ}$

(D) $\frac{EF}{RP} = \frac{DE}{QR}$

Solution:

(B)

We have,



In $\triangle DEF$ and $\triangle PQR$,

$$\angle D = \angle Q,$$

$$\angle R = \angle E$$

$$\triangle DEF \sim \triangle PQR$$

[using AAA similarity criterion]

$$\angle F = \angle P$$

[corresponding angles]

$$\frac{DF}{QP} = \frac{ED}{RQ} = \frac{FE}{PR}$$

7. In triangles ABC and DEF, $\angle B = \angle E$, $\angle F = \angle C$ and $AB = 3DE$. Then, the two triangles are

- (A) Congruent but not similar
- (B) Similar but not congruent
- (C) Neither congruent nor similar
- (D) Congruent as well as similar

Solution:

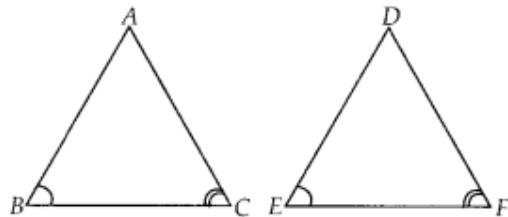
(B)

In $\triangle ABC$ and $\triangle DEF$,

$$\angle B = \angle E,$$

$$\angle F = \angle C \text{ and}$$

$$AB = 3DE$$



We know that, if in two triangles corresponding two angles are same, then they are similar by AA similarity criterion.

But,

$$AB \neq DE$$

Therefore $\triangle ABC$ and $\triangle DEF$ are not congruent.

8. It is given that $\triangle ABC \sim \triangle PQR$, with $\frac{BC}{QR} = \frac{1}{3}$. Then, $\frac{\text{ar}(PQR)}{\text{ar}(BCA)}$ is equal to

- (A) 9
- (B) 3
- (C) $\frac{1}{3}$
- (D) $\frac{1}{9}$

Solution:

(A)

We have,

$$\triangle ABC \sim \triangle PQR$$

$$\frac{BC}{QR} = \frac{1}{3}$$

We know that, the ratio of the areas of two similar triangles is equal to square of the ratio of their corresponding sides.

Therefore,

$$\frac{\text{ar}(PQR)}{\text{ar}(BCA)} = \frac{QR^2}{BC^2}$$

$$\frac{QR^2}{BC^2} = \frac{3^2}{1^2} = 9$$

9. It is given that $\triangle ABC \sim \triangle DFE$, $\angle A = 30^\circ$, $\angle C = 50^\circ$, $AB = 5 \text{ cm}$, $AC = 8 \text{ cm}$ and $DF = 7.5 \text{ cm}$. Then, the following is true:

- (A) $DE = 12 \text{ cm}$, $\angle F = 50^\circ$
- (B) $DE = 12 \text{ cm}$, $\angle F = 100^\circ$
- (C) $EF = 12 \text{ cm}$, $\angle D = 100^\circ$
- (D) $EF = 12 \text{ cm}$, $\angle D = 30^\circ$

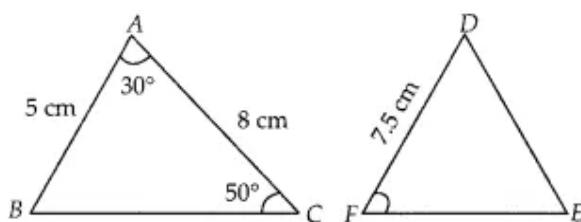
Solution:

We have,

$$\triangle ABC \sim \triangle DFE,$$

$$\angle A = \angle D = 30^\circ,$$

$$\angle C = \angle E = 50^\circ$$



$$\begin{aligned}\angle B &= \angle F \\ &= 180^\circ - (50^\circ + 30^\circ) \\ &= 100^\circ\end{aligned}$$

Now,

$$\frac{AB}{DF} = \frac{AC}{DE}$$

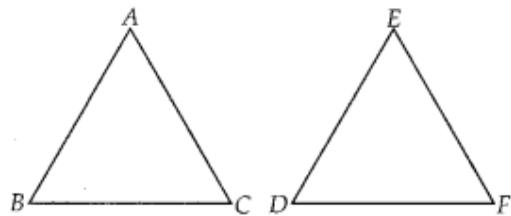
$$\frac{5}{7.5} = \frac{8}{DE}$$

$$DE = 12\text{cm}$$

10. If in triangles ABC and DEF, $\frac{AB}{DE} = \frac{BC}{FD}$, then they will be similar when

- (A) $\angle B = \angle E$
- (B) $\angle A = \angle D$
- (C) $\angle B = \angle D$
- (D) $\angle A = \angle F$

Solution:



Given, in $\triangle ABC$ and $\triangle EDF$,

$$\frac{AB}{DE} = \frac{BC}{FD}$$

Therefore,

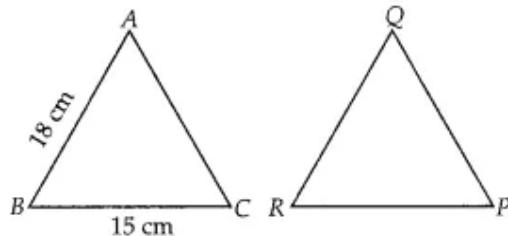
$\triangle ABC \sim \triangle EDF$ if, $\angle B = \angle D$ [By SAS similarity criterion]

11. If $\triangle ABC \sim \triangle QRP$, and $BC = 15\text{ cm}$, then PR is equal to

- (A) 10 cm
- (B) 12 cm
- (C) $\frac{20}{3}$ cm
- (D) 8 cm

Solution:

In given question,



We know that the ratio of area of two similar triangles is equal to the ratio of square of their corresponding sides.

$$\frac{ar(ABC)}{ar(QRP)} = \frac{(BC)^2}{(RP)^2} \text{ Also, } \frac{ar(ABC)}{ar(QRP)} = \frac{9}{4}$$

Therefore,

$$\frac{(BC)^2}{(RP)^2} = \frac{9}{4}$$

$$\frac{(15)^2}{(RP)^2} = \frac{9}{4}$$

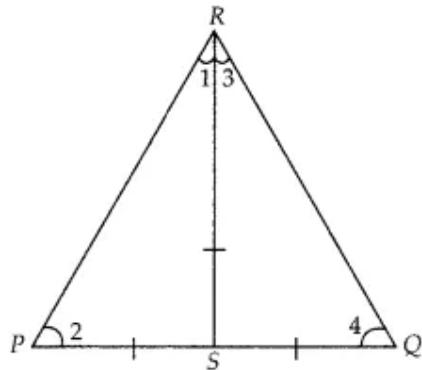
$$RP = 10\text{cm}$$

12. If S is a point on side PQ of a $\triangle PQR$ such that $PS = QS = RS$, then

- (A) $PR \cdot QR = RS^2$
- (B) $QS^2 + RS^2 = QR^2$
- (C) $PR^2 + QR^2 = PQ^2$
- (D) $PS^2 + RS^2 = PR^2$

Solution:

In given question,



In $\triangle PQR$,

$$PS = QS = RS \quad \dots \dots \dots \text{ (i)}$$

Now,

In $\triangle PSR$,

$$PS = RS \quad \text{(By eqn (i))} \quad \dots \dots \dots \text{ (ii)}$$

$$\angle 1 = \angle 2$$

[Angles opposite to equal sides are equal]

Also, in $\triangle RSQ$,

$$RS = SQ \quad \dots \dots \dots \text{ (iii)}$$

$$\angle 3 = \angle 4$$

[Angles opposite to equal sides are equal]

We know that, in ΔPQR , sum of angles = 180°

$$\angle P + \angle Q + \angle R = 180^\circ$$

$$\angle 2 + \angle 4 + \angle 1 + \angle 3 = 180^\circ$$

$$\angle 1 + \angle 3 + \angle 1 + \angle 3 = 180^\circ$$

$$2(\angle 1 + \angle 3) = 180^\circ$$

$$= 90^\circ$$

$$\text{So, } \angle R = 90^\circ$$

In ΔPQR , by Pythagoras theorem,

$$PR^2 + QR^2 = PQ^2$$

Exercise No. 6.2

Short Answer Questions with Reasoning:

Question:

1. Is the triangle with sides 25 cm, 5 cm and 24 cm a right triangle? Give reason for your answer.

Solution:

It is not true.

Taking,

$a = 25$ cm,

$b = 5$ cm and

$c = 24$ cm

Now,

$$\begin{aligned}b^2 + c^2 &= (5)^2 + (24)^2 \\&= 25 + 576 \\&= 601 \\&\neq (25)^2\end{aligned}$$

Therefore, given sides do not make a right triangle because it does not satisfy the property of Pythagoras theorem.

2. It is given that $\Delta DEF \sim \Delta RPQ$. Is it true to say that $\angle D = \angle R$ and $\angle F = \angle P$? Why?

Solution:

It is not true

We know that, if two triangles are similar, then their corresponding angles are equal.

$\angle D = \angle R$,

$\angle E = \angle P$ and

$\angle F = \angle Q$

3. A and B are respectively the points on the sides PQ and PR of a ΔPQR such that $PQ = 12.5$ cm, $PA = 5$ cm, $BR = 6$ cm and $PB = 4$ cm. Is $AB \parallel QR$? Give reason for your answer.

Solution:

It is correct.

Given,

$PQ = 12.5$ cm,

$PA = 5$ cm,

$BR = 6$ cm and

$$PB = 4 \text{ cm}$$

Also,

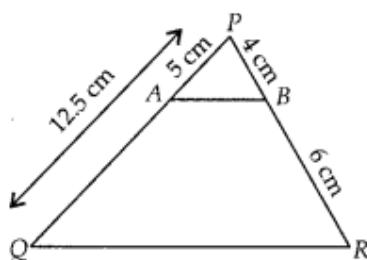
$$\begin{aligned}\frac{PB}{BR} &= \frac{4}{6} \\ &= \frac{2}{3}\end{aligned}$$

$$\text{So, } QA = QP - PA$$

$$= 12.5 - 5$$

$$= 7.5 \text{ cm}$$

$$\begin{aligned}\frac{PA}{AQ} &= \frac{5}{7.5} \\ &= \frac{2}{3}\end{aligned}$$

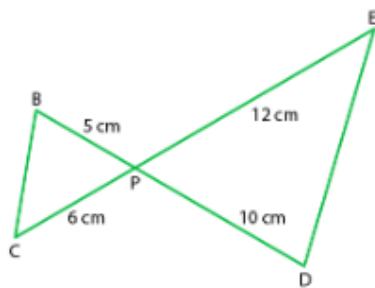


Therefore,

$$\frac{PA}{AQ} = \frac{PB}{BR}$$

So by converse of basic proportionality theorem, $AB \parallel QR$.

4. In figure, BD and CE intersect each other at the point P. Is $\triangle PBC \sim \triangle PDE$? Why?



Solution:

It is correct.

In $\triangle PBC$ and $\triangle PDE$,

$$\angle BPC = \angle EPD$$

[vertically opposite angles]

$$\frac{PB}{PD} = \frac{5}{10}$$

$$= \frac{1}{2}$$

$$\frac{PC}{PE} = \frac{6}{12}$$

$$= \frac{1}{2}$$

So,

$$\frac{PB}{PD} = \frac{PC}{PE}$$

As, one angle of ΔPBC is equal to one angle of ΔPDE and the sides including these angles are proportional, so both triangles are similar.

So, $\Delta PBC \sim \Delta PDE$, by SAS similarity criterion.

5. In ΔPQR and ΔMST , $\angle P = 55^\circ$, $\angle Q = 25^\circ$, $\angle M = 100^\circ$ and $\angle S = 25^\circ$. Is $\Delta PQR \sim \Delta TSM$? Why?

Solution:

It is not true.

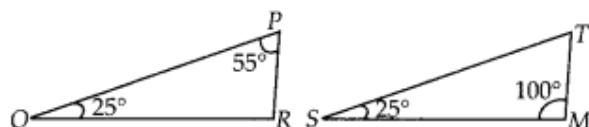
As, the sum of three angles of a triangle is 180° .

In ΔPQR ,

$$\begin{aligned} \angle P + \angle Q + \angle R &= 180^\circ \\ 55^\circ + 25^\circ + \angle R &= 180^\circ \\ \angle R &= 180^\circ - (55^\circ + 25^\circ) \\ &= 180^\circ - 80^\circ = 100^\circ \end{aligned}$$

In ΔTSM ,

$$\begin{aligned} \angle T + \angle S + \angle M &= 180^\circ \\ \angle T + 25^\circ + 100^\circ &= 180^\circ \\ \angle T &= 180^\circ - (25^\circ + 100^\circ) \\ &= 180^\circ - 125^\circ \\ &= 55^\circ \end{aligned}$$



So,

In ΔPQR and ΔTSM ,

$\angle P = \angle T$,
 $\angle Q = \angle S$ and
 $\angle R = \angle M$
 $\angle PQR = \angle TSM$

[As, all corresponding angles are equal]

Therefore,

$\triangle PQR$ is not similar to $\triangle TSM$, because correct correspondence is $P \leftrightarrow T$, $Q \leftrightarrow S$ and $R \leftrightarrow M$.

6. Is the following statement true? Why?

“Two quadrilaterals are similar, if their corresponding angles are equal”.

Solution:

It is not true.

Two quadrilaterals are similar if their corresponding angles are equal and corresponding sides must also be proportional.

7. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

Solution:

Yes, It is true.

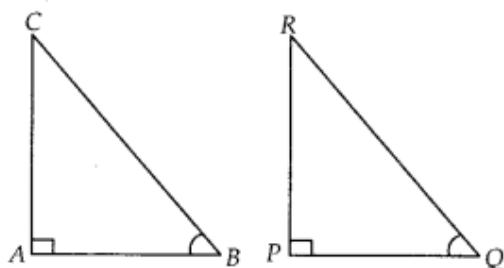
The corresponding two sides and the perimeters of two triangles are proportional, then the third side of both triangles will also be in proportion.

8. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle, can you say that the two triangles will be similar? Why?

Solution:

It is false.

Let two right angled triangles be $\triangle ABC$ and $\triangle PQR$



Where,

$\angle A = \angle P = 90^\circ$ and

$\angle B = \angle Q = \text{acute angle}$

(Given)

So, by AA similarity criterion, $\Delta ABC \sim \Delta PQR$

9. The ratio of the corresponding altitudes of two similar triangles is $\frac{3}{5}$. Is it correct to say that ratio of their areas is $\frac{6}{5}$? Why?

Solution:

It is false.

Ratio of corresponding altitudes of two triangles having areas A_1 and A_2 respectively is $\frac{3}{5}$.

Using the property of area of two similar triangles,

$$\frac{A_1}{A_2} = \left(\frac{3}{5}\right)^2$$

$$\frac{6}{5} \neq \frac{9}{25}$$

So, the given statement is not correct.

10. D is a point on side QR of ΔPQR such that $PD \perp QR$. Will it be correct to say that $\Delta PQD \sim \Delta RPD$? Why?

Solution:

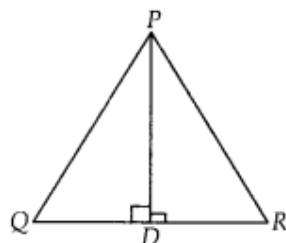
No, it is false statement.

In given ΔPQD and ΔRPD ,

$$PD = PD$$

$$\angle PDQ = \angle PDR$$

[common side]
[each 90°]

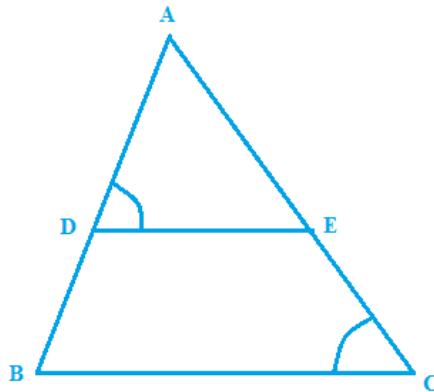


Also, no other sides or angles are equal, so we can say that ΔPQD is not similar to ΔRPD .
But if $\angle P = 90^\circ$, then

$$\angle DPQ = \angle PRD$$

[each equal to $90^\circ - \angle Q$ and by ASA similarity criterion, $\Delta PQD \sim \Delta RPD$]

11. In Fig. 6.5, if $\angle D = \angle C$, then is it true that $\Delta ADE \sim \Delta ACB$? Why?



Solution:

True

In ΔADE and ΔACB ,

$\angle A = \angle A$

[common angle]

$\angle D = \angle C$ [given]

$\Delta ADE \sim \Delta ACB$

[using AA similarity criterion]

12. Is it true to say that if in two triangles, an angle of one triangle is equal to an angle of another triangle and two sides of one triangle are proportional to the two sides of the other triangle, then the triangles are similar? Give reasons for your answer.

Solution:

False

As, according to SAS similarity criterion, if one angle of a triangle is equal to an angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

In the above question, one angle and two sides of two triangles are equal but these sides does not includes equal angle, so given statement is not true.

Exercise No. 6.3

Short Answer Questions:

Question:

1. In a ΔPQR , $PR^2 - PQ^2 = QR^2$ and M is a point on side PR such that $QM \perp PR$.

Prove that:

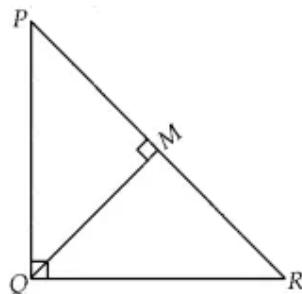
$$QM^2 = PM \times MR.$$

Solution:

In ΔPQR ,

$$PR^2 = QR^2 \text{ and}$$

$$QM \perp PR$$



Using Pythagoras theorem, we have,

$$PR^2 = PQ^2 + QR^2$$

ΔPQR is right angled triangle at Q .

From ΔQMR and ΔPMQ , we get,

$$\angle M = \angle M$$

$$\angle MQR = \angle QPM \quad [\text{each } 90^\circ - \angle R]$$

So, using the AAA similarity criteria,

We have,

$$\Delta QMR \sim \Delta PMQ$$

Also,

$$\text{Area of triangles} = \frac{1}{2} \times \text{base} \times \text{height}$$

So, by property of area of similar triangles,

$$\frac{ar(QMR)}{ar(PMQ)} = \frac{QM^2}{PM^2}$$

$$\frac{ar(QMR)}{ar(PMQ)} = \frac{\frac{1}{2}RM \times QM}{\frac{1}{2}PM \times QM}$$

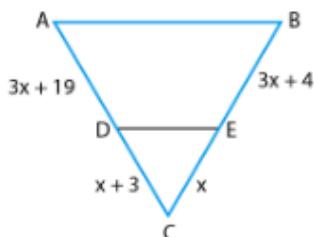
So,

$$\frac{QM^2}{PM^2} = \frac{\frac{1}{2}RM \times QM}{\frac{1}{2}PM \times QM}$$

$$QM^2 = PM \times RM$$

Hence proved.

2. Find the value of x for which $DE \parallel AB$ in given figure.



Solution:

As given in the question,

$$DE \parallel AB$$

Using basic proportionality theorem,

$$\frac{CD}{AD} = \frac{CE}{BE}$$

If a line is drawn parallel to one side of a triangle such that it intersects the other sides at distinct points, then, the other two sides are divided in the same ratio.

Therefore, we can conclude that, the line drawn is equal to the third side of the triangle.

$$\frac{x+3}{3x+19} = \frac{x}{3x+4}$$

$$(x+3)(3x+4) = x(3x+19)$$

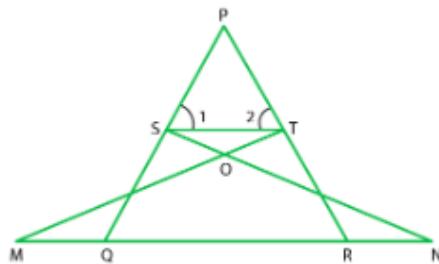
$$3x^2 + 4x + 9x + 12 = 3x^2 + 19x$$

$$19x - 13x = 12$$

$$6x = 12$$

$$x = 2$$

3. In figure, if $\angle 1 = \angle 2$ and $\triangle NSQ \cong \triangle MTR$, then prove that $\triangle PTS \sim \triangle PRQ$.



Solution:

As given in the question,

$$\triangle NSQ \cong \triangle MTR$$

$$\angle 1 = \angle 2$$

As,

$$\triangle NSQ \cong \triangle MTR$$

So,

$$SQ = TR$$

....(i)

Also,

$$\angle 1 = \angle 2 \text{ so,}$$

$$PT = PS$$

....(ii)

[As, sides opposite to equal angles are also equal]

Using Equation (i) and (ii).

$$\frac{PS}{SQ} = \frac{PT}{TR}$$

So, $ST \parallel QR$

By converse of basic proportionality theorem, If a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, the other two sides are divided in the same ratio.

$$\angle 1 = \angle PQR \text{ and } \angle 2 = \angle PRQ$$

Now, In ΔPTS and ΔPRQ .

$$\begin{aligned} \angle P &= \angle P \\ \angle 1 &= \angle PQR \\ \angle 2 &= \angle PRQ \\ \Delta PTS &- \Delta PRQ \end{aligned}$$

[Common angles]
(proved)
(proved)

[By AAA similarity criteria]

Hence proved.

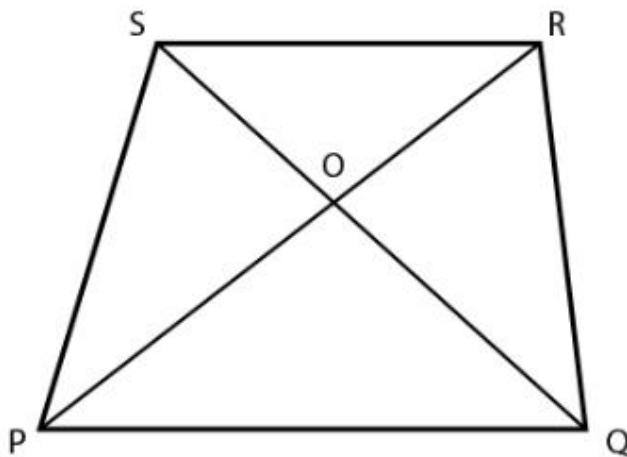
4. Diagonals of a trapezium PQRS intersect each other at the point O, $PQ \parallel RS$ and $PQ = 3 RS$. Find the ratio of the areas of ΔPOQ and ΔROS .

Solution:

As given in the question,

$PQRS$ is a trapezium in which $PQ \parallel RS$ and $PQ = 3RS$

$$\frac{PQ}{RS} = \frac{3}{1} \quad \dots(i)$$



In $\triangle POQ$ and $\triangle ROS$,

$$\angle SOR = \angle QOP$$

$$\angle SRP = \angle RPQ$$

$$\triangle POQ \sim \triangle ROS$$

[vertically opposite angles]

[alternate angles]

[by AAA similarity criterion]

Using property of area of similar triangle,

$$\frac{ar(POQ)}{ar(SOR)} = \frac{PQ^2}{RS^2}$$

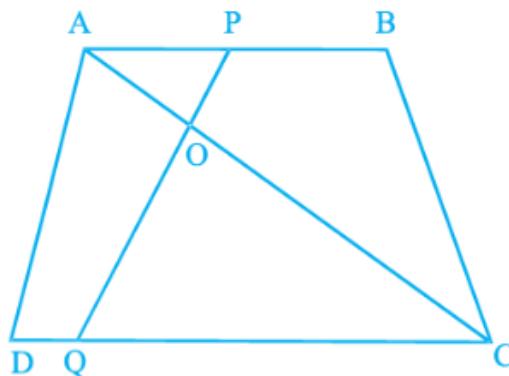
$$\frac{PQ^2}{RS^2} = \left(\frac{PQ}{RS}\right)^2$$

$$= \left(\frac{3}{1}\right)^2$$

$$= 9$$

So, the required ratio = 9:1.

5. In figure, if $AB \parallel DC$ and AC, PQ intersect each other at the point O . Prove that $OA \cdot CQ = OC \cdot AP$.



Solution:

As given in the question,

AC and PQ intersect each other at the point O and $AB \parallel DC$.

Using $\triangle AOP$ and $\triangle COQ$,

$$\angle AOP = \angle COQ$$

[as they are vertically opposite angles]

$$\angle APO = \angle CQO$$

[since, $AB \parallel DC$ and PQ is transversal, Angles are alternate angles]

So,

$$\triangle AOP \sim \triangle COQ$$

[using AAA similarity criterion]

As, corresponding sides are proportional

We have,

$$\frac{OA}{OC} = \frac{AP}{CQ}$$

$$OA \times CQ = OC \times AP$$

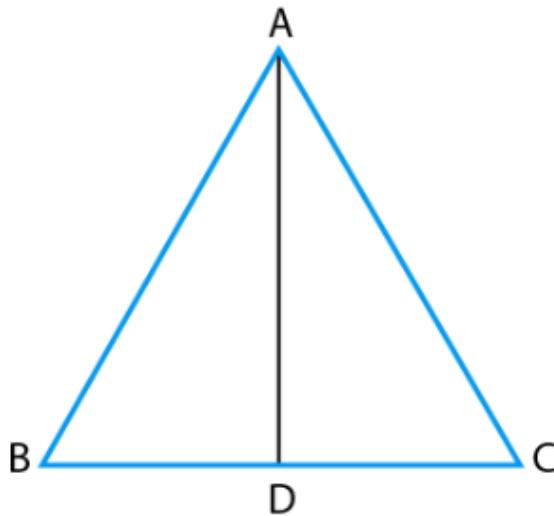
Hence Proved!!!

6. Find the altitude of an equilateral triangle of side 8 cm.

Solution:

Taking ABC be an equilateral triangle of side 8 cm.

$AB = BC = CA = 8 \text{ cm}$ (sides of an equilateral triangle is equal)



Draw altitude AD which is perpendicular to BC.

Then, D is the mid-point of BC.

$$BD = CD = \frac{1}{2}$$

$$\begin{aligned} BC &= \frac{8}{2} \\ &= 4 \text{ cm} \end{aligned}$$

Now,

Using Pythagoras theorem

$$AB^2 = AD^2 + BD^2$$

$$(8)^2 = AD^2 + (4)^2$$

$$64 = AD^2 + 16$$

$$\begin{aligned}AD &= \sqrt{48} \\&= 4\sqrt{3} \text{ cm.}\end{aligned}$$

Therefore, altitude of an equilateral triangle is $4\sqrt{3}$ cm.

7. If $\Delta ABC \sim \Delta DEF$, $AB = 4$ cm, $DE = 6$, $EF = 9$ cm and $FD = 12$ cm, then find the perimeter of ΔABC .

Solution:

As given in the question,

$$AB = 4 \text{ cm,}$$

$$DE = 6 \text{ cm}$$

$$EF = 9 \text{ cm}$$

$$FD = 12 \text{ cm}$$

Also,

$$\Delta ABC \sim \Delta DEF$$

We have,

$$\begin{aligned}\frac{AB}{ED} &= \frac{BC}{EF} = \frac{AC}{DF} \\ \frac{4}{6} &= \frac{BC}{9} = \frac{AC}{12}\end{aligned}$$

Now,

$$\frac{4}{6} = \frac{BC}{9}$$

$$BC = 6 \text{ cm}$$

Similarly,

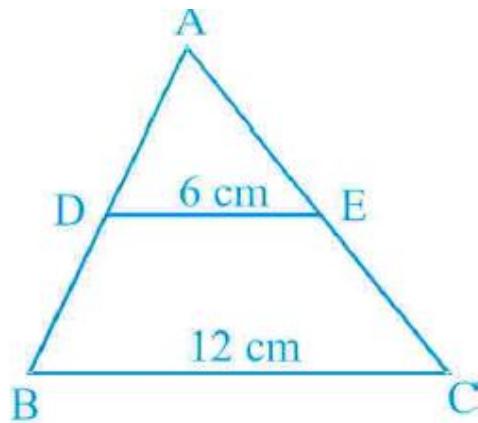
$$\frac{AC}{12} = \frac{4}{6}$$

$$AC = 8 \text{ cm}$$

$$\begin{aligned}\text{Perimeter of } \Delta ABC &= AB + BC + AC \\&= 4 + 6 + 8 = 18 \text{ cm}\end{aligned}$$

So, the perimeter of the triangle is 18 cm.

8. In Fig. 6.11, if $DE \parallel BC$, find the ratio of $\text{ar}(\Delta ADE)$ and $\text{ar}(\Delta DECB)$.



Solution:

We have,
 $DE \parallel BC$,
 $DE = 6 \text{ cm}$ and
 $BC = 12 \text{ cm}$

In ΔABC and ΔADE ,

$\angle ABC = \angle ADE$ [corresponding angle]

and

$\angle A = \angle A$ [common side]

$\Delta ABC \sim \Delta ADE$

[using AA similarity criterion]

$$\begin{aligned} \frac{ar(ADE)}{ar(ABC)} &= \frac{DE^2}{BC^2} \\ &= \frac{6^2}{12^2} \\ &= \frac{1}{4} \end{aligned}$$

Taking,

$ar(\Delta ADE) = k$, then
 $ar(\Delta ABC) = 4k$

Now,

$$\begin{aligned} ar(\Delta ECB) &= ar(ABC) - ar(ADE) \\ &= 4k - k = 3k \end{aligned}$$

So,

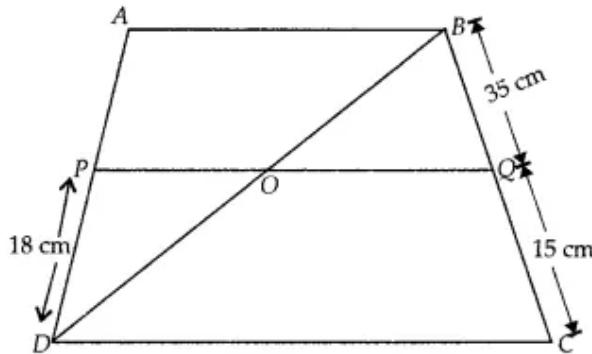
$$\begin{aligned} \text{Required ratio} &= ar(ADE) : ar(\Delta ECB) \\ &= k : 3k \\ &= 1 : 3 \end{aligned}$$

9. ABCD is a trapezium in which $AB \parallel DC$ and P and Q are points on AD and BC, respectively such that $PQ \parallel DC$. If $PD = 18 \text{ cm}$, $BQ = 35 \text{ cm}$ and $QC = 15 \text{ cm}$, find AD.

Solution:

We have, a trapezium ABCD in which $AB \parallel DC$. P and Q are points on AD and BC, respectively such that $PQ \parallel DC$.

So, $AB \parallel PQ \parallel DC$.



In $\triangle ABD$, $PO \parallel AB$

$$\frac{DP}{AP} = \frac{DO}{OB} \quad \dots\dots(i)$$

In $\triangle BDC$, $OQ \parallel DC$

$$\frac{BQ}{QC} = \frac{OB}{OD}$$

or,

$$\frac{QC}{BQ} = \frac{DO}{OB} \quad \dots\dots(ii)$$

So, from (i) and (ii),

$$\frac{DP}{AP} = \frac{QC}{BQ}$$

$$\frac{18}{AP} = \frac{15}{35}$$

$$AP = 42 \text{ cm.}$$

Also;

$$\begin{aligned} AD &= AP + PD \\ &= 42 + 18 = 60 \end{aligned}$$

So,
 $AD = 60 \text{ cm}$

10. Corresponding sides of two similar triangles are in the ratio of 2:3. If the area of the smaller triangle is 48 cm^2 , find the area of the larger triangle.

Solution:

According to the question,

Ratio of corresponding sides of two similar triangles is $2 : 3$ or $\frac{2}{3}$

Area of smaller triangle = 48 cm^2

Using the property of area of two similar triangles,

Ratio of area of both triangles = (Ratio of their corresponding sides) 2

$$\frac{\text{ar(smaller triangle)}}{\text{ar(larger triangle)}} = \left(\frac{2}{3}\right)^2$$

$$\frac{48}{\text{ar(larger triangle)}} = \left(\frac{2}{3}\right)^2$$

$$\text{ar(larger triangle)} = 108 \text{ cm}^2$$

11. In a triangle PQR, N is a point on PR such that $QN \perp PR$. If $PN \cdot NR = QN^2$, prove that $\angle PQR = 90^\circ$.

Solution:

We have,

In $\triangle PQR$, N is a point on PR, such that $QN \perp PR$ and $PN \cdot NR = QN^2$

To prove: $\angle PQR = 90^\circ$

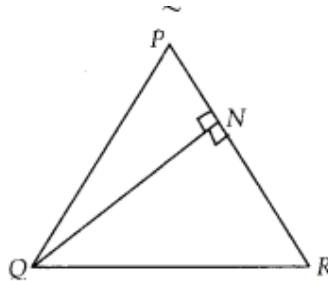
Proof:

We have, $PN \cdot NR = QN^2$

$$PN \cdot NR = QN \cdot QN$$

So,

$$\frac{PN}{QN} = \frac{QN}{NR}$$



Also,

$\angle PNQ = \angle RNQ$ [each equal to 90°]

$\Delta QNP \sim \Delta RNQ$

[by SAS similarity criterion]

So we can say, ΔQNP and ΔRNQ are equiangular.

$\angle PQN = \angle QRN$

$\angle RQN = \angle QPN$

On adding both sides,

$\angle PQN + \angle RQN = \angle QRN + \angle QPN$

$\angle PQR = \angle QRN + \angle QPN$ (ii)

We have, sum of angles of a triangle is 180°

In ΔPQR ,

$\angle PQR + \angle QPR + \angle QRP = 180^\circ$

$\angle PQR + \angle QPN + \angle QRN = 180^\circ$

[$\because \angle QPR = \angle QPN$ and $\angle QRP = \angle QRN$]

$\angle PQR + \angle PQR = 180^\circ$ [using Eq. (ii)]

$2\angle PQR = 180^\circ$

$\angle PQR = 90^\circ$

Hence proved.

12. Areas of two similar triangles are 36 cm^2 and 100 cm^2 . If the length of a side of the larger triangle is 20 cm , find the length of the corresponding side of the smaller triangle.

Solution:

We have,

Area of smaller triangle = 36 cm^2

Area of larger triangle = 100 cm^2

And, length of a side of the larger triangle = 20 cm

Let length of the corresponding side of the smaller triangle = $x \text{ cm}$

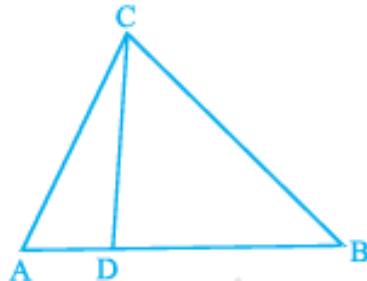
By property of area of similar triangles,

$$\frac{\text{ar}(\text{larger triangle})}{\text{ar}(\text{smaller triangle})} = \frac{(\text{side of larger triangle})^2}{(\text{side of smaller triangle})^2}$$

$$\frac{100}{36} = \frac{20^2}{x^2}$$

$$x = 12 \text{ cm}$$

13. In the given fig., if $\angle ACB = \angle CDA$, $AC = 8 \text{ cm}$ and $AD = 3 \text{ cm}$, find BD .



Solution:

We have,

$$AC = 8 \text{ cm},$$

$$AD = 3 \text{ cm}$$

$$\angle ACB = \angle CDA$$

In $\triangle ACD$ and $\triangle ABC$,

$$\begin{aligned} \angle A &= \angle A && [\text{Common angle}] \\ \angle ADC &= \angle ACB && [\text{Given}] \\ \text{So,} \end{aligned}$$

$$\triangle ADC \sim \triangle ACB$$

[By AA similarity criterion]

$$\frac{AC}{AD} = \frac{AB}{AC}$$

$$\frac{8}{3} = \frac{AB}{8}$$

$$AB = \frac{64}{3} \text{ cm}$$

Also,

$$AB = BD + AD$$

$$\frac{64}{3} = BD + 3$$

$$BD = \frac{55}{3} \text{ cm}$$

14. A 15 meters high tower casts a shadow 24 meters long at a certain time and at the same time, a telephone pole casts a shadow 16 meters long. Find the height of the telephone pole.

Solution:

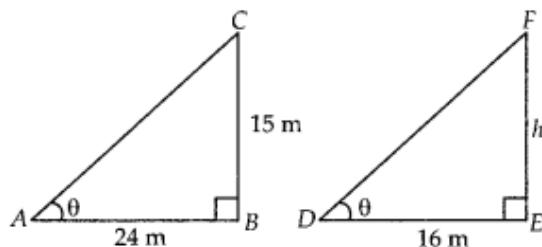
Taking $BC = 15$ m be the tower and its shadow $AB = 24$ m.

Let $\angle CAB = \theta$.

Again, let $EF = h$ be a telephone pole and its shadow $DE = 16$ m.

At the same time $\angle EDF = \theta$.

ΔABC and ΔDEF both are right angled triangles.



In ΔABC and ΔDEF ,

$$\angle CAB = \angle EDF$$

$$\angle B = \angle E$$

So, by AA rule,

$$\Delta ABC \sim \Delta DEF$$

$$\frac{AB}{DE} = \frac{BC}{EF}$$

$$\frac{24}{16} = \frac{15}{h}$$

$$h = 10$$

Hence, the height of the point on the wall where the top of the ladder reaches is 8 m.

15. Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.

Solution:

Let AB be a vertical wall and $AC = 10$ m is a ladder.

The top of the ladder reached to A and distance of ladder from the base of the wall BC is 6 m.

In right angled ΔABC

$$AC^2 = AB^2 + BC^2$$

[by Pythagoras theorem]

$$(10)^2 = AB^2 + (6)^2$$

$$100 = AB^2 + 36$$

$$AB^2 = 100 - 36 = 64$$

$$AB = 8 \text{ m}$$

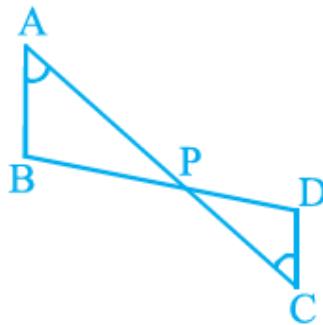
Therefore, the height of the point on the wall where the top of the ladder reaches is 8 m.

Exercise No. 6.4

Long Answer Questions:

Question:

1. In Fig., if $\angle A = \angle C$, $AB = 6 \text{ cm}$, $BP = 15 \text{ cm}$, $AP = 12 \text{ cm}$ and $CP = 4 \text{ cm}$, then find the lengths of PD and CD .



Solution:

We have,
 $\angle A = \angle C$,
 $AB = 6 \text{ cm}$,
 $BP = 15 \text{ cm}$,
 $AP = 12 \text{ cm}$ and
 $CP = 4 \text{ cm}$

In $\triangle APB$ and $\triangle CPD$,

$\angle A = \angle C$ [given]
 $\angle APB = \angle CPD$ [vertically opposite angles]
 $\triangle APB \sim \triangle CPD$ [by AA similarity criterion]

$$\frac{AP}{CP} = \frac{PB}{PD} = \frac{AB}{CD}$$
$$\frac{12}{4} = \frac{15}{PD} = \frac{6}{CD}$$

So,

$$\frac{12}{4} = \frac{15}{PD}$$

$$PD = 5 \text{ cm}$$

Also,

$$\frac{12}{4} = \frac{6}{CD}$$

$$CD = 2 \text{ cm}$$

Therefore, length of PD is 5 cm and length of CD is 2 cm.

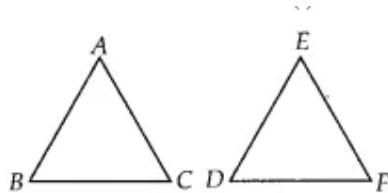
2. It is given that $\Delta ABC \sim \Delta EDF$ such that $AB = 5 \text{ cm}$, $AC = 7 \text{ cm}$, $DF = 15 \text{ cm}$ and $DE = 12 \text{ cm}$. Find the lengths of the remaining sides of the triangles.

Solution:

We have,

$\Delta ABC \sim \Delta EDF$, so the corresponding sides of ΔABC and ΔEDF are in the same ratio

$$\frac{AB}{ED} = \frac{AC}{EF} = \frac{BC}{DF} \dots \dots \dots \text{ (i)}$$



Also, we have,

$$AB = 5 \text{ cm},$$

$$AC = 7 \text{ cm},$$

$$DF = 15 \text{ cm} \text{ and}$$

$$DE = 12 \text{ cm}$$

$$\text{Putting value in } \frac{AB}{ED} = \frac{AC}{EF} = \frac{BC}{DF},$$

$$\frac{5}{12} = \frac{7}{EF} = \frac{BC}{15}$$

So,

$$\frac{5}{12} = \frac{7}{EF}$$

$$EF = 16.8 \text{ cm}$$

Also,

$$\frac{5}{12} = \frac{BC}{15}$$

$$BC = 6.25 \text{ cm}$$

So, lengths of the remaining sides of the triangles are $EF = 16.8 \text{ cm}$ and $BC = 6.25 \text{ cm}$.

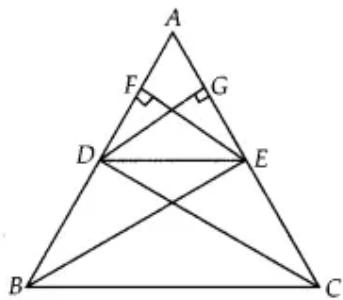
3. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides, then the two sides are divided in the same ratio.

Solution:

Let us take $\triangle ABC$ in which a line DE parallel to BC intersects AB at D and AC at E .

To prove: DE divides the two sides in the same ratio.

$$\frac{AD}{DB} = \frac{AE}{EC}$$



Construction:

Join BE and CD

$EF \perp AB$

$DG \perp AC$

Proof:

$$\begin{aligned} \frac{ar(ADE)}{ar(BDE)} &= \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF} \\ &= \frac{AD}{DB} \end{aligned} \quad \dots \dots (i)$$

Also,

$$\begin{aligned} \frac{ar(ADE)}{ar(DEC)} &= \frac{\frac{1}{2} \times AE \times GD}{\frac{1}{2} \times EC \times GD} \\ &= \frac{AE}{EC} \end{aligned} \quad \dots \dots (ii)$$

As,

$\triangle BDE$ and $\triangle DEC$ lie between the same parallel lines DE and BC and on the same base DE

So,

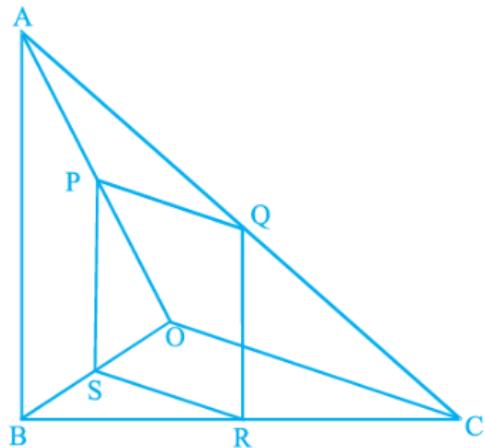
$$ar(\triangle BDE) = ar(\triangle DEC) \quad \dots \dots (iii)$$

From Eqs. (i), (ii) and (iii),

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Hence proved!!!

4. In Fig., if PQRS is a parallelogram and $AB \parallel PS$, then prove that $OC \parallel SR$.



Solution:

We have,

PQRS is a parallelogram, so $PQ \parallel SR$ and $PS \parallel QR$.

Also

$$AB \parallel PS.$$

To prove: OC || SR

Proof: In $\triangle OPS$ and $\triangle OAB$, $PS \parallel AB$

$$\angle \text{POS} = \angle \text{AOB}$$

[common angle]

$$\angle OSP = \angle OBA$$

[corresponding angles]

$$\Delta \text{OPS} \sim \Delta \text{OAB}$$

(i)

In Δ COE and Δ CAB, $OB \parallel PS \parallel AB$

$$\angle QCB = \angle ACB$$

[common angle]

$$\angle QCR = \angle ACD$$

200

30,
ACOPB - ACAB

$$\frac{QR}{AB} = \frac{CR}{QB}$$

$$\frac{PS}{AB} = \frac{CR}{OB} \quad \dots\dots(ii)$$

($PS \equiv QR$, opposite sides of parallelogram)

From (i) and (ii),

$$\frac{OS}{OB} = \frac{CR}{CB}$$

or,

$$\frac{OB}{OS} = \frac{CB}{CR}$$

Subtracting 1 from both sides, we get,

$$\frac{OB}{OS} - 1 = \frac{CB}{CR} - 1$$

$$\frac{OB - OS}{OS} = \frac{CB - CR}{CR}$$

$$\frac{BS}{OS} = \frac{BR}{CR}$$

By using converse of basic proportionality theorem, $SR \parallel OC$.

Hence proved

5. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.

Solution:

Taking AC be the ladder of length 5 m and BC = 4 m be the height of the wall, which ladder is placed.

If the foot of the ladder is moved 1.6 m towards the wall so, $AD = 1.6$ m, then the ladder is slide upward i.e., $CE = x$ m.

In right angled $\triangle ABC$,

$$AC^2 = AB^2 + BC^2$$

[using Pythagoras theorem]

$$(5)^2 = (AB)^2 + (4)^2$$

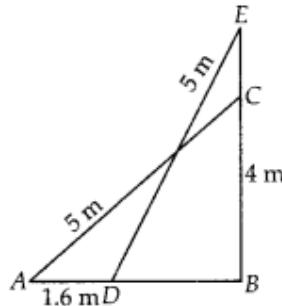
$$\begin{aligned}AB^2 &= 25 - 16 \\&= 9\end{aligned}$$

$$AB = 3\text{m}$$

Now,

$$DB = AB - AD$$

$$= 3 - 1.6 \\ = 1.4 \text{ m}$$



In right angled ΔEBD ,

$$\begin{aligned} ED^2 &= EB^2 + BD^2 && [\text{using Pythagoras theorem}] \\ (5)^2 &= (EB)^2 + (1.4)^2 \\ 25 &= (EB)^2 + 1.96 \\ (EB)^2 &= 25 - 1.96 \\ &= 23.04 \\ EB &= 4.8 \end{aligned}$$

Now,

$$\begin{aligned} EC &= EB - BC \\ &= 4.8 - 4 \\ &= 0.8 \end{aligned}$$

Therefore, the top of the ladder would slide upwards on the wall at distance is 0.8 m.

6. For going to a city B from city A, there is a route via city C such that $AC \perp CB$, $AC = 2x$ km and $CB = 2(x + 7)$ km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.

Solution:

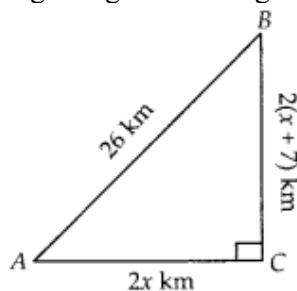
We have,

$AC \perp CB$,

$AC = 2x$ km,

$CB = 2(x + 7)$ km and $AB = 26$ km

On drawing the figure, we get the right angle ΔACB right angled at C.



Now,

In $\Delta A C B$, by Pythagoras theorem,

$$A B^2 = A C^2 + B C^2$$

$$(26)^2 = (2x)^2 + \{2(x + 7)\}^2$$

$$676 = 4x^2 + 4(x^2 + 49 + 14x)$$

$$676 = 4x^2 + 4x^2 + 196 + 56x$$

$$676 = 8x^2 + 56x + 196$$

$$8x^2 + 56x - 480 = 0$$

On dividing by 8, we get,

$$x^2 + 7x - 60 = 0$$

$$x^2 + 12x - 5x - 60 = 0$$

$$x(x + 12) - 5(x + 12) = 0$$

$$(x + 12)(x - 5) = 0$$

$$x = -12,$$

$$x = 5$$

As, distance cannot be negative.

$$x = 5$$

$$[\because x \neq 12]$$

Now,

$$A C = 2x$$

$$= 10 \text{ km and}$$

$$B C = 2(x + 7)$$

$$= 2(5 + 7)$$

$$= 24 \text{ km}$$

The distance covered to reach city B from city A via city C = $A C + B C$

$$= 10 + 24$$

$$= 34 \text{ km}$$

Distance covered to reach city B from city A after the construction of the highway is

$$B A = 26 \text{ km}$$

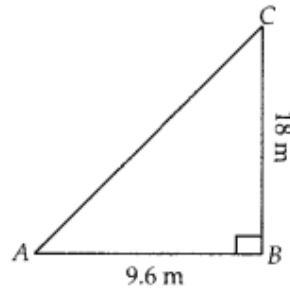
So, the required saved distance is $34 - 26 = 8 \text{ km}$.

7. A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.

Solution:

Let $B C = 18 \text{ m}$ be the flag pole and its shadow be $A B = 9.6 \text{ m}$.

The distance of the top of the pole, C from the far end which is A of the shadow is $A C$



In right angled $\triangle ABC$

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = (9.6)^2 + (18)^2$$

$$AC^2 = 92.16 + 324$$

$$AC^2 = 416.16$$

$$AC = 20.4 \text{ m}$$

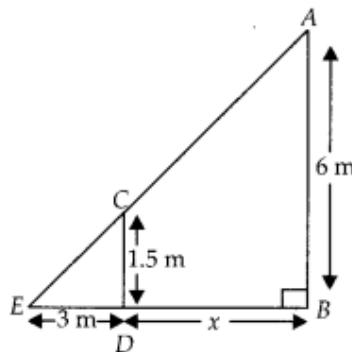
[using Pythagoras theorem]

So, the required distance is 20.4 m.

8. A street light bulb is fixed on a pole 6 m above the level of the street. If a woman of height 1.5 m casts a shadow of 3m, find how far she is away from the base of the pole.

Solution:

Taking A be the position of the street bulb fixed on a pole $AB = 6 \text{ m}$ and $CD = 1.5 \text{ m}$ be the height of a woman and her shadow be $ED = 3 \text{ m}$. And distance between pole and woman be $x \text{ m}$.



In this question, woman and pole both are standing vertically

So,

$$CD \parallel AB$$

In $\triangle CDE$ and $\triangle ABE$,

$$\angle E = \angle E$$

[common angle]

$$\angle ABE = \angle CDE$$

[each equal to 90°]

$$\triangle CDE \sim \triangle ABE$$

[by AA similarity criterion]

Then,

$$\frac{ED}{EB} = \frac{CD}{AB}$$

$$\frac{3}{3+x} = \frac{1.5}{6}$$

$$3 \times 6 = 1.5(3 + x)$$

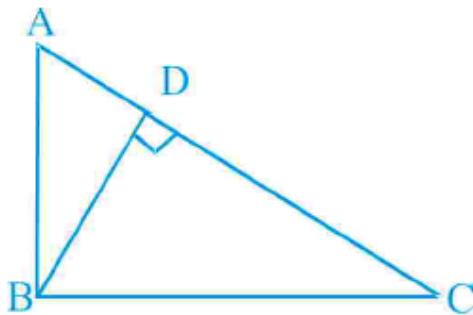
$$18 = 1.5 \times 3 + 1.5x$$

$$1.5x = 18 - 4.5$$

$$x = 9 \text{ m}$$

So, she is at the distance of 9 m from the base of the pole.

9. In Fig., ABC is a triangle right angled at B and $BD \perp AC$. If $AD = 4 \text{ cm}$, and $CD = 5 \text{ cm}$, find BD and AB.



Solution:

Given,

$\triangle ABC$ in which $\angle B = 90^\circ$ and

$BD \perp AC$

Also, $AD = 4 \text{ cm}$ and

$CD = 5 \text{ cm}$

In $\triangle DBA$ and $\triangle DCB$,

$$\angle ADB = \angle CDB \quad [\text{each equal to } 90^\circ]$$

and

$$\begin{aligned} \angle BAD &= \angle DBC \\ \triangle DBA &\sim \triangle DCB \quad [\text{by AA similarity criterion}] \end{aligned}$$

So,

$$\frac{DB}{DA} = \frac{DC}{DB}$$

$$DB^2 = DA \times DC$$

$$= 4 \times 5$$

$$DB = 2\sqrt{5} \text{ cm}$$

In $\triangle BDC$,

$$BC^2 = BD^2 + CD^2 \text{ (Using pythagoras theorem)}$$

$$= (2\sqrt{5})^2 + 5^2$$

$$= 3\sqrt{5}$$

Also,

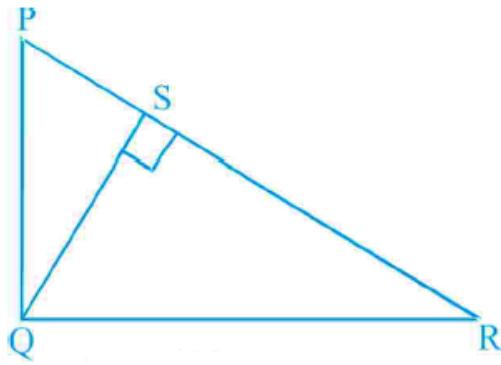
$$\triangle DBA \sim \triangle DBC$$

$$\frac{DB}{DC} = \frac{BA}{BC}$$

$$\frac{(2\sqrt{5})}{5} = \frac{BA}{(3\sqrt{5})}$$

$$AB = 6 \text{ cm}$$

10. In Fig., PQR is a right triangle right angled at Q and $QS \perp PR$. If $PQ = 6$ cm and $PS = 4$ cm, find QS, RS and QR.



Solution:

We have,

In $\triangle PQR$,
 $\angle Q = 90^\circ$,
 $QS \perp PR$ and
 $PQ = 6 \text{ cm}$,
 $PS = 4 \text{ cm}$

In ΔSQP and ΔSRQ ,

$$\angle PSQ = \angle RSQ$$

$$\angle SPQ = \angle SQR$$

[each equal to 90°]

[each equal to $90^\circ - \angle R$]

$\Delta SQP \sim \Delta SRQ$ [By AA similarity criterion]

$$\text{Then, } \frac{SQ}{PS} = \frac{SR}{SQ}$$

$$SQ^2 = PS \times SR$$

..... (i)

In right angled ΔPSQ ,

$$PQ^2 = PS^2 + QS^2$$

$$(6)^2 = (4)^2 + QS^2$$

$$36 = 16 + QS^2$$

$$QS^2 = 36 - 16$$

$$= 20$$

[using Pythagoras theorem]

$$QS = 2\sqrt{5} \text{ cm}$$

From eqn (i),

Putting value of PS and QS we get,

$$RS = 5 \text{ cm}$$

Now, In ΔQSR ,

$$QR^2 = QS^2 + SR^2$$

So, putting value of QS and SR we get,

$$QR = 3\sqrt{5} \text{ cm}$$

11. In ΔPQR , $PD \perp QR$ such that D lies on QR. If $PQ = a$, $PR = b$, $QD = c$ and $DR = d$, prove that $(a+b)(a-b) = (c+d)(c-d)$.

Solution:

Given:

In ΔPQR , $PD \perp QR$,

$$PQ = a,$$

$$PR = b,$$

$$QD = c \text{ and}$$

$$DR = d$$

To prove: $(a+b)(a-b) = (c+d)(c-d)$

Proof:

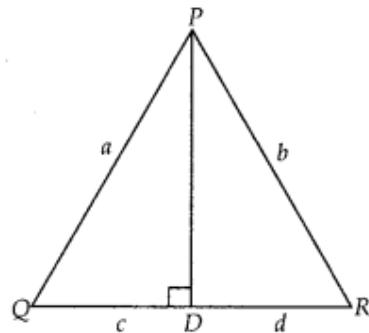
In right angled ΔPDQ ,

$$PQ^2 = PD^2 + QD^2$$

$$a^2 = PD^2 + c^2$$

[using Pythagoras theorem]

$$PD^2 = a^2 - c^2 \quad \dots \dots \dots \text{(i)}$$



In right angled $\triangle PDR$,

$$\begin{aligned} PR^2 &= PD^2 + DR^2 && [\text{using Pythagoras theorem}] \\ b^2 &= PD^2 + d^2 \\ PD^2 &= b^2 - d^2 && \dots \dots \dots \text{(ii)} \end{aligned}$$

From Eqs. (i) and (ii)

$$a^2 - c^2 = b^2 - d^2$$

$$a^2 - b^2 = c^2 - d^2$$

$$(a - b)(a + b) = (c - d)(c + d)$$

Hence proved.

12. In a quadrilateral ABCD, $\angle A + \angle D = 90^\circ$. Prove that $AC^2 + BD^2 = AD^2 + BC^2$
[Hint: Produce AB and DC to meet at E.]

Solution:

Given:

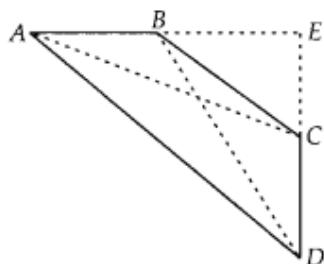
Quadrilateral ABCD,

$$\angle A + \angle D = 90^\circ$$

To prove: $AC^2 + BD^2 = AD^2 + BC^2$

Construct: Produce AB and CD to meet at E

Also join AC and BD



Proof:

In $\triangle AED$,

$$\angle A + \angle D = 90^\circ$$

[given]

$$\angle E = 180^\circ - (\angle A + \angle D)$$

$$= 90^\circ \quad [\text{sum of angles of a triangle} = 180^\circ]$$

So, by Pythagoras theorem,

$$AD^2 = AE^2 + DE^2$$

In $\triangle BEC$, by Pythagoras theorem,

$$BC^2 = BE^2 + EC^2$$

Adding both equations, we get

$$AD^2 + BC^2 = AE^2 + DE^2 + BE^2 + CE^2 \quad \dots \dots \dots \text{(i)}$$

In $\triangle AEC$, by Pythagoras theorem,

$$AC^2 = AE^2 + CE^2$$

In $\triangle BED$, by Pythagoras theorem,

$$BD^2 = BE^2 + DE^2$$

Adding both equations, we get

$$AC^2 + BD^2 = AE^2 + CE^2 + BE^2 + DE^2 \quad \dots \dots \dots \text{(ii)}$$

From Eqs. (i) and (ii)

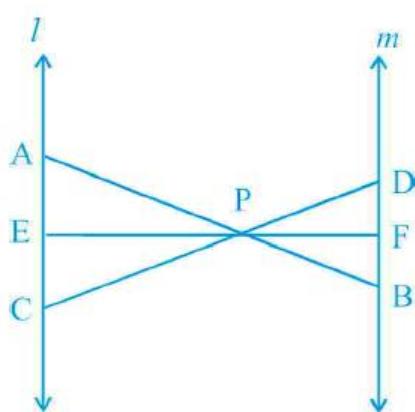
$$AC^2 + BD^2 = AD^2 + BC^2$$

Hence proved.

13. In Fig., $l \parallel m$ and line segments AB , CD and EF are concurrent at point P .

Prove that

$$\frac{AE}{BF} = \frac{AC}{BD} = \frac{CE}{FD}$$



Solution:

We have, $l \parallel m$ and line segments AB, CD and EF are concurrent at point P

To Prove,

$$\frac{AE}{BF} = \frac{AC}{BD} = \frac{CE}{FD}$$

In ΔAPC and ΔBPD ,

$\angle APC = \angle BPD$ (vertically opposite angles)

$\angle PAC = \angle PBD$ (Alternate angles)

so,

$\Delta APC : \Delta BPD$ (By AA Similarity)

$$\frac{AP}{PB} = \frac{AC}{BD} = \frac{PC}{PD}$$

Now,

In ΔAPE and ΔBPF ,

$\angle APE = \angle BPF$ (vertically opposite angles)

$\angle PAE = \angle PBF$ (Alternate angles)

so,

$\Delta APE : \Delta BPF$ (By AA Similarity)

$$\frac{AP}{PB} = \frac{AE}{BF} = \frac{PE}{PF}$$

Now,

In ΔPEC and ΔPDF ,

$\angle APC = \angle BPD$ (vertically opposite angles)

$\angle PAC = \angle PBD$ (Alternate angles)

so,

$\Delta PEC : \Delta PDF$ (By AA Similarity)

$$\frac{PC}{PD} = \frac{PE}{PF} = \frac{EC}{FD}$$

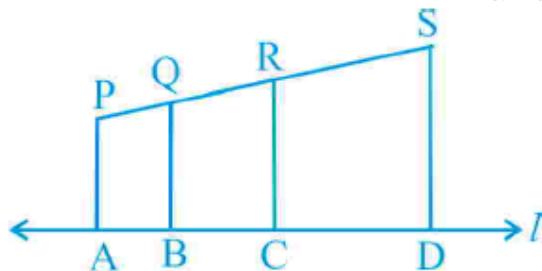
So, from above equations,

$$\frac{AP}{PB} = \frac{AC}{BD} = \frac{PE}{PF} = \frac{EC}{FD} = \frac{AE}{BF}$$

$$\frac{AE}{BF} = \frac{AC}{BD} = \frac{EC}{FD}$$

Hence proved!!

14. In Fig., PA, QB, RC and SD are all perpendiculars to a line l , $AB = 6$ cm, $BC = 9$ cm, $CD = 12$ cm and $SP = 36$ cm. Find PQ , QR and RS .



Solution:

We have,

$$AB = 6 \text{ cm},$$

$$BC = 9 \text{ cm},$$

$$CD = 12 \text{ cm and}$$

$$SP = 36 \text{ cm}$$

Also, PA , QB , RC and SD are all perpendiculars to line l ,

$$PA \parallel QB \parallel RC \parallel SD$$

Using Basic proportionality theorem,

$$PQ : QR : RS = AB : BC : CD$$

$$= 6 : 9 : 12$$

Taking,

$$PQ = 6x,$$

$$QR = 9x \text{ and}$$

$$RS = 12x$$

As,

Length of $PS = 36$ cm

$$PQ + QR + RS = 36$$

$$6x + 9x + 12x = 36$$

$$27x = 36$$

$$x = \frac{4}{3}$$

Now,

$$PQ = 6x$$

$$= 6 \times \frac{4}{3}$$

$$= 8 \text{ cm}$$

$$QR = 9x$$

$$= 9 \times \frac{4}{3} \\ = 12 \text{ cm}$$

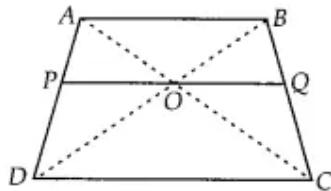
$$\begin{aligned} RS &= 12x \\ &= 12 \times \frac{4}{3} \\ &= 16 \text{ cm} \end{aligned}$$

15. O is the point of intersection of the diagonals AC and BD of a trapezium ABCD with $AB \parallel DC$. Through O, a line segment PQ is drawn parallel to AB meeting AD in P and BC in Q. Prove that $PO = QO$.

Solution:

Given ABCD is a trapezium. Diagonals AC and BD are intersect at O. PQ \parallel AB \parallel DC

To prove: $PO = QO$



Proof:

In $\triangle ABD$ and $\triangle POD$,
 $PO \parallel AB$

$$\begin{aligned}\angle D &= \angle D \\ \angle ABD &= \angle POD \\ \Delta ABD &\sim \Delta POD\end{aligned}$$

[as, PQ || AB]

[common angle]
[corresponding angles]
y AA similarity criterion]

Then,

$$\frac{OP}{AD} = \frac{PD}{AD} \quad \dots \dots \dots \text{(i)}$$

In $\triangle ABC$ and $\triangle OQC$, $OQ \parallel AB$

$$\begin{aligned} \angle C &= \angle C && [\text{common angle}] \\ \angle BAC &= \angle QOC && [\text{corresponding angles}] \\ \therefore \triangle ABC &\sim \triangle OQC && [\text{by AA similarity criterion}] \end{aligned}$$

$$\frac{OQ}{AB} = \frac{QC}{BC}$$

Also, In $\triangle ADC$, $OP \parallel DC$

$$\frac{AP}{PD} = \frac{OA}{OC}$$

In $\triangle ABC$, $OQ \parallel AB$

$$\frac{BQ}{QC} = \frac{OA}{OC}$$

Therefore,

$$\frac{AP}{PD} = \frac{BQ}{QC}$$

Adding 1 on both sides,

$$\frac{AP}{PD} + 1 = \frac{BQ}{QC} + 1$$

$$\frac{AP + PD}{PD} = \frac{BQ + QC}{QC}$$

$$\frac{AD}{PD} = \frac{BC}{QC}$$

or,

$$\frac{PD}{AD} = \frac{QC}{BC}$$

Also,

$$\frac{OP}{AB} = \frac{QC}{BC} \text{ and } \frac{OP}{AB} = \frac{OQ}{AB}$$

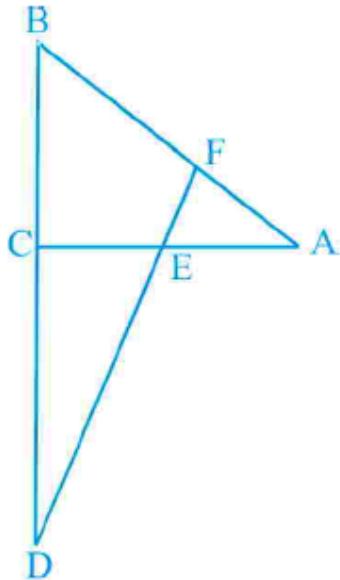
Therefore,

$$OP = OQ$$

16. In Fig., line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and $\angle AEF = \angle AFE$. Prove that

$$\frac{BD}{CD} = \frac{BF}{CE}$$

[Hint: Take point G on AB such that CG \parallel DF.]



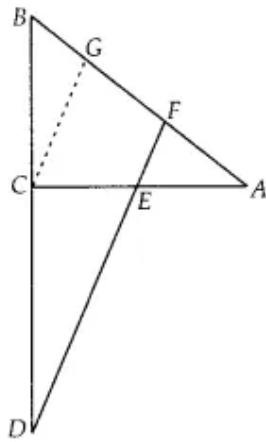
Solution:

Given $\triangle ABC$, E is the mid-point of CA and $\angle AEF = \angle AFE$

To prove: $\frac{BD}{CD} = \frac{BF}{CE}$

Construction: Take a point G on AB such that $CG \parallel DF$

Proof: As, E is the mid-point of CA



$$CE = AE \quad \dots \text{(i)}$$

In $\triangle ACG$, $CG \parallel EF$ and E is mid-point of CA

$$\text{So, } CE = GF \quad \dots \text{(ii) [by mid-point theorem]}$$

Now, in ΔBCG and ΔBDF , $CG \parallel DF$

$$\frac{BC}{CD} = \frac{BG}{GF}$$

$$\frac{BC}{CD} = \frac{BF - GF}{GF}$$

$$\frac{BC}{CD} = \frac{BF}{GF} - 1$$

$$\frac{BC}{CD} + 1 = \frac{BF}{CE} \quad (from (ii))$$

$$\frac{BC + CD}{CD} = \frac{BF}{CE}$$

$$\frac{BD}{CD} = \frac{BF}{CE}$$

17. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.

Solution:

ABC is a right triangle, right angled at B in which

$$AB = y,$$

$$BC = x$$

We will draw three semi-circles are drawn on the sides AB, BC and AC, respectively with diameters AB, BC and AC, respectively.

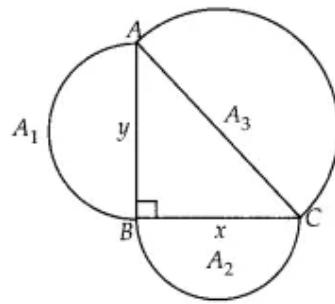
Again,

Taking area of circles with diameters AB, BC and AC are respectively A_1 , A_2 and A_3

$$\text{To prove : } A_3 = A_1 + A_2$$

Proof :

In ΔABC , by Pythagoras theorem,



$$AC^2 = AB^2 + BC^2$$

$$AC^2 = y^2 + x^2$$

$$AC = \sqrt{y^2 + x^2}$$

$$\text{Also, area of semicircle drawn on } AC = \frac{\pi r^2}{2}$$

$$= \frac{\pi}{2} \left(\frac{AC}{2} \right)^2$$

$$A_3 = \frac{\pi(y^2 + x^2)}{8}$$

Now,

$$\begin{aligned} \text{area of semicircle drawn on } AB &= \frac{\pi r^2}{2} \\ &= \frac{\pi}{2} \left(\frac{AB}{2} \right)^2 \end{aligned}$$

$$A_1 = \frac{\pi(y^2)}{8}$$

Now,

$$\begin{aligned} \text{area of semicircle drawn on } BC &= \frac{\pi r^2}{2} \\ &= \frac{\pi}{2} \left(\frac{BC}{2} \right)^2 \end{aligned}$$

$$A_2 = \frac{\pi(x^2)}{8}$$

From above equations, we see that,

$$A_3 = A_1 + A_2$$

Hence Proved!!!

18. Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.

Solution:

$\triangle BAC$ is a right triangle in which $\angle A$ is right angle and

$AC = y$,

$AB = x$

Now we draw three equilateral triangles on the three sides of $\triangle ABC$,

$\triangle AEC$,

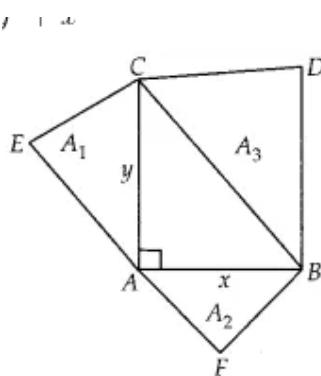
$\triangle AFB$ and

$\triangle CBD$

Let us assume area of triangles made on AC , AB and BC are A_1 , A_2 and A_3 respectively.

We need to prove that,

$$A_3 = A_1 + A_2$$



Proof :

In $\triangle CAB$, using Pythagoras theorem,

$$BC^2 = AC^2 + AB^2$$

$$BC^2 = y^2 + x^2$$

$$BC = \sqrt{y^2 + x^2}$$

$$\text{Also Area of equilateral triangle} = \frac{\sqrt{3}}{4} a^2$$

Now we calculate the area A_1 , A_2 , and A_3 respectively

$$ar(\Delta AEC) = A_1$$

$$A_1 = \frac{\sqrt{3}}{4} AC^2$$

$$A_1 = \frac{\sqrt{3}}{4} y^2$$

Now,

$$ar(\Delta AFB) = A_2$$

$$A_2 = \frac{\sqrt{3}}{4} AB^2$$

$$A_2 = \frac{\sqrt{3}}{4} x^2$$

$$ar(\Delta CBD) = A_3$$

$$A_3 = \frac{\sqrt{3}}{4} CB^2$$

$$A_3 = \frac{\sqrt{3}}{4} (y^2 + x^2)$$

$$A_3 = \frac{\sqrt{3}}{4} x^2 + \frac{\sqrt{3}}{4} y^2$$

$$A_3 = A_1 + A_2$$

Hence Proved!!