

Chapter - 10
Construction

Exercise No. 10.1

Multiple Choice Questions:

Choose the correct answer from the given four options:

1. To divide a line segment AB in the ratio 5:7, first a ray AX is drawn so that $\angle BAX$ is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is

- (A) 8
- (B) 10
- (C) 11
- (D) 12

Solution:

(D) 12

As given in the question,

A line segment AB in the ratio 5:7

So,

$A:B = 5:7$

We draw a ray AX making an acute angle $\angle BAX$,

And mark A+B points at equal distance.

$A=5$ and $B=7$

Therefore,

$$\begin{aligned}\text{Minimum number of these points} &= A+B \\ &= 5+7 = 12\end{aligned}$$

2. To divide a line segment AB in the ratio 4:7, a ray AX is drawn first such that $\angle BAX$ is an acute angle and then points A_1, A_2, A_3, \dots are located at equal distances on the ray AX and the point B is joined to

- (A) A_{12}
- (B) A_{11}
- (C) A_{10}
- (D) A_9

Solution:

(B) A_{11}

As given in the question,

A line segment AB in the ratio 4:7

So,

$$A:B = 4:7$$

Now,

Draw a ray AX making an acute angle BAX

Minimum number of points located at equal distances on the ray,

$$AX = A+B$$

$$= 4+7$$

$$= 11$$

$A_1, A_2, A_3 \dots$ are located at equal distances on the ray AX.

Point B is joined to the last point is A_{11} .

3. To divide a line segment AB in the ratio 5 : 6, draw a ray AX such that $\angle BAX$ is an acute angle, then draw a ray BY parallel to AX and the points A_1, A_2, A_3, \dots and B_1, B_2, B_3, \dots are located at equal distances on ray AX and BY, respectively. Then the points joined are

- (A) A_5 and B_6
- (B) A_6 and B_5
- (C) A_4 and B_5
- (D) A_5 and B_4

Solution:

(A)

A_5 and B_6

As given in the question,

A line segment AB in the ratio 5:7

So,

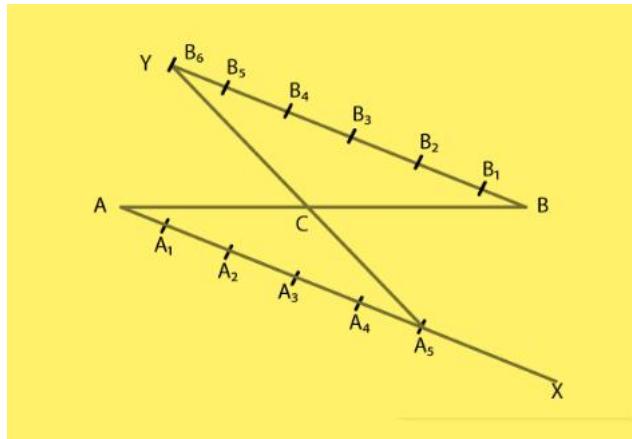
$$A:B = 5:7$$

Steps of construction:

1. Draw a ray AX, an acute angle BAX.
2. Draw a ray BY $\parallel AX$, $\angle ABY = \angle BAX$.
3. Now, locate the points A_1, A_2, A_3, A_4 and A_5 on AX and B_1, B_2, B_3, B_4, B_5 and B_6
(Because A: B = 5:7)
4. Join A_5B_6 .

A_5B_6 intersect AB at a point C.

$$AC: BC = 5:6$$



4. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle ABC$, first draw a ray BX such that $\angle CBX$ is an acute angle and X lies on the opposite side of A with respect to BC . Then locate points B_1, B_2, B_3, \dots on BX at equal distances and next step is to join

- (A) B_{10} to C
- (B) B_3 to C
- (C) B_7 to C
- (D) B_4 to C

Solution:

(C)

In this, we locate points $B_1, B_2, B_3, B_4, B_5, B_6$ and B_7 on BX at equal distance and in next step join the last point B_7 to C .

5. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle ABC$ draw a ray BX such that $\angle CBX$ is an acute angle and X is on the opposite side of A with respect to BC . The minimum number of points to be located at equal distances on ray BX is

- (A) 5
- (B) 8
- (C) 13
- (D) 3

Solution:

(B)

To construct a triangle similar to a given triangle, with its sides $\frac{m}{n}$ of the n corresponding sides of given triangle the minimum number of points to be located at equal distance is equal to the greater of m and n in $\frac{m}{n}$. Here, $\frac{m}{n} = \frac{8}{5}$ So, the minimum number of point to be located at equal distance on ray BX is 8.

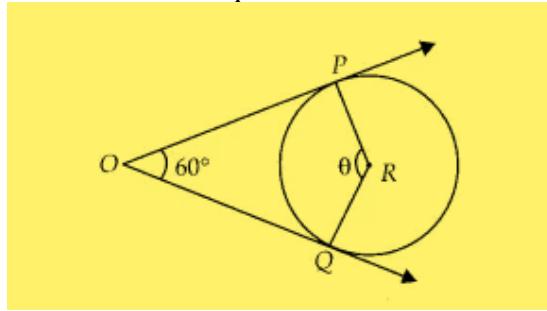
6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60° , it is required to draw tangents at end points of those two radii of the circle, the angle between them should be

- (A) 135°
- (B) 90°
- (C) 60°
- (D) 120°

Solution:

(D)

The angle between them should be 120° because in that case the figure formed by the intersection point of pair of tangent, the two end points of those two radii (at which tangents are drawn) and the centre of the circle is a quadrilateral.



From figure POQR is a quadrilateral,

$$\angle POQ + \angle PRQ = 180^\circ$$

[as, sum of opposite angles are 180°]

$$60^\circ + \theta = 180^\circ$$

$$\theta = 120^\circ$$

Therefore, the required angle between them is 120° .

Exercise No. 10.2

Short Answer Questions with Reasoning:

Write 'True' or 'False' and justify your answer in each of the following:

1. By geometrical construction, it is possible to divide a line segment in the ratio $\sqrt{3} : \frac{1}{\sqrt{3}}$.

Solution:

True

Explanation:

As given in the question,

$$\text{Ratio} = \sqrt{3} : \frac{1}{\sqrt{3}}$$

On solving,

$$\sqrt{3} : \frac{1}{\sqrt{3}} = 3 : 1$$

Required ratio = 3:1

Therefore, geometrical construction is possible to divide a line segment in the ratio 3:1.

2. To construct a triangle similar to a given ΔABC with its sides $\frac{7}{3}$ of the corresponding sides of ΔABC , draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B_1, B_2, \dots, B_7 are located at equal distances on BX, B_3 is joined to C and then a line segment B_6C' is drawn parallel to B_3C where C' lies on BC produced. Finally, line segment $A'C'$ is drawn parallel to AC.

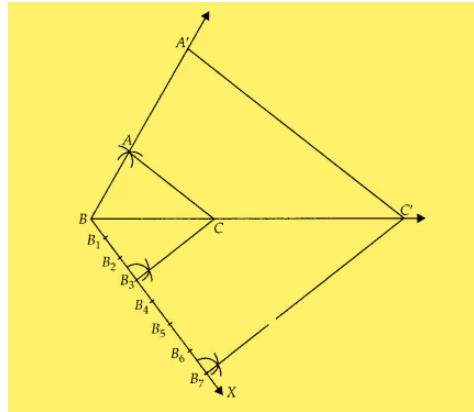
Solution:

False

Steps of construction:

1. Draw a line segment BC with suitable length.
2. Taking B and C as centers draw two arcs of suitable radii intersecting each other at A.
3. Join BA and CA. ΔABC is the required triangle.
4. From B draw any ray BX downwards making an acute angle CBX.

5. Locate seven points $B_1, B_2, B_3, \dots, B_7$ on BX such that $BB_1 = B_1B_2 = B_1B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7$.
6. Join B_3C and from B_7 draw a line $B_7C' \parallel B_3C$ intersecting the extended line segment BC at C' .
7. From point C' draw $C'A' \parallel CA$ intersecting the extended line segment BA at A' .



Then

$\Delta A'BC'$ is the required triangle whose sides are $\frac{7}{3}$ of the corresponding sides of ΔABC .

Given,

Segment B_6C' is drawn parallel to B_3C .

But from our construction is never possible that segment B_6C' is parallel to B_3C because the similar triangle $A'BC'$ has its sides $\frac{7}{3}$ of the corresponding sides of triangle ABC .

Therefore, B_7C' is parallel to B_3C .

3. A pair of tangents can be constructed from a point P to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.

Solution:

False

As, the radius of the circle is 3.5 cm

$r = 3.5$ cm and a point P situated at a distance of 3 cm from the centre

So,

$d = 3$ cm.

We can see that $r > d$

Therefore, a point P lies inside the circle.

And, no tangent can be drawn to a circle from a point lying inside it.

4. A pair of tangents can be constructed to a circle inclined at an angle of 170° .

Solution:

True

As, the angle between the pair of tangents is always greater than 0 but less than 180° .
Therefore, we can draw a pair of tangents to a circle inclined at an angle at 170° .

Exercise No. 10.3

Short Answer Questions:

Question:

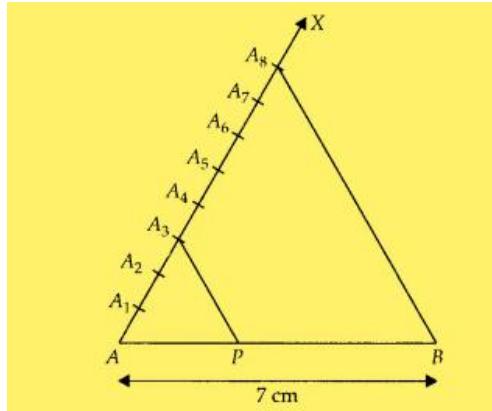
1. Draw a line segment of length 7 cm. Find a point P on it which divides it in the ratio 3:5.

Solution:

Steps of construction:

1. Draw a line segment $AB = 7$ cm.
2. Draw a ray AX , making an acute $\angle BAX$.
3. Along AX , mark $3 + 5 = 8$ points
 $A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8$
Such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6 = A_6A_7 = A_7A_8$
4. Join A_8B .
5. From A_3 , draw $A_3P \parallel A_8B$ meeting AB at P .
[by making an angle equal to $\angle BA_8A$ at A_3]

So, P is the point on AB which divides it in the ratio $3 : 5$.



Explanation:

Let

$$AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = \dots = A_7A_8 = x$$

In $\triangle ABA_8$, we have

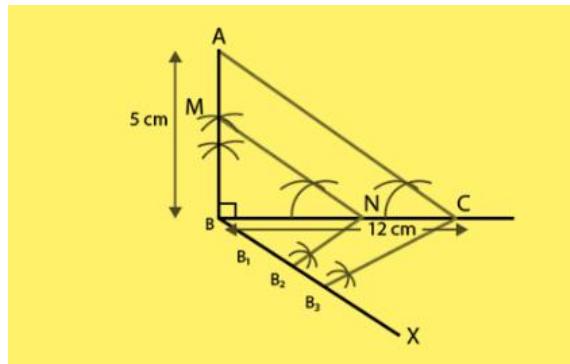
$$A_3P \parallel A_8B$$

$$\frac{AP}{PB} = \frac{AA_3}{A_3A_8} = \frac{3x}{5x}$$

Therefore, $AP : PB = 3 : 5$

2. Draw a right triangle ABC in which BC = 12 cm, AB = 5 cm and $\angle B = 90^\circ$. Construct a triangle similar to it and of scale factor $\frac{2}{3}$. Is the new triangle also a right triangle?

Solution:



Steps of construction:

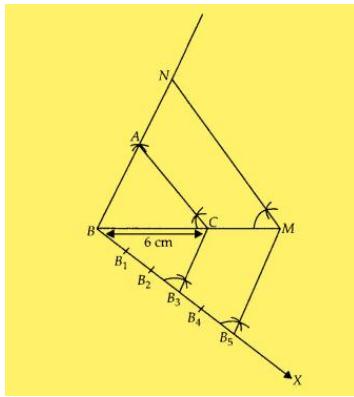
1. Draw a line segment BC = 12 cm.
2. From B draw a line AB = 5 cm which makes right angle at B.
3. Join AC, $\triangle ABC$ is the given right triangle.
4. From B draw an acute $\angle CBX$ downwards.
5. On ray BX, mark three points B_1, B_2 and B_3 , such that $BB_1 = B_1B_2 = B_2B_3$.
6. Join B_3C .
7. From point B_2 draw $B_2N \parallel B_3C$ intersect BC at N.
8. From point N draw $NM \parallel CA$ intersect BA at M. $\triangle MBN$ is the required triangle. $\triangle MBN$ is also a right angled triangle at B.

3. Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor $\frac{5}{3}$.

Solution:

Steps of construction:

1. Draw a line segment BC = 6 cm.
2. Taking B and C as centers, draw two arcs of radii 4 cm and 5 cm intersecting each other at A.
3. Join BA and CA. $\triangle ABC$ is the required triangle.
4. From B, draw any ray BX downwards making an acute angle $\angle CBX$.
5. Mark five points B_1, B_2, B_3, B_4 and B_5 on BX, such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$.



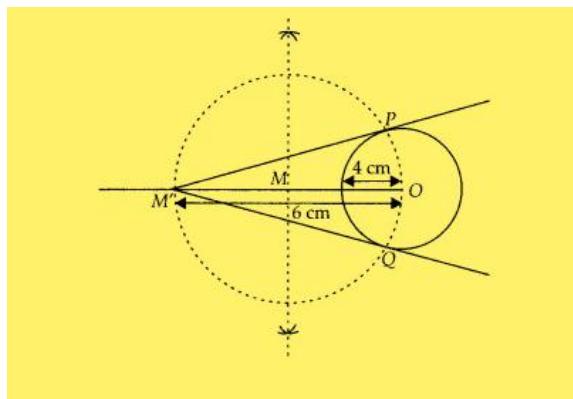
6. Join B_3C and from B_5 draw $B_5M \parallel B_3C$ intersecting the extended line segment BC at M .

7. From point M draw $MN \parallel CA$ intersecting the extended line segment BA at N .

Therefore, $\triangle NBM$ is the required triangle whose sides is equal to $\frac{5}{3}$ of the corresponding sides of the $\triangle ABC$.

4. Construct a tangent to a circle of radius 4 cm from a point which is at a distance of 6 cm from its center.

Solution:



We have, a point M' is at a distance of 6 cm from the centre of a circle of radius 4 cm.

Steps of construction:

1. Draw a circle of radius 4 cm. Let the centre of this circle be O .
2. Join OM' and bisect it. Let M be mid-point of OM' .
3. Taking M as centre and MO as radius draw a circle to intersect circle $(O, 4)$ at two points, P and Q .
4. Join PM' and QM' . PM' and QM' are the required tangents from M' to circle $C(0, 4)$.

Exercise No. 10.4

Long Answer Questions:

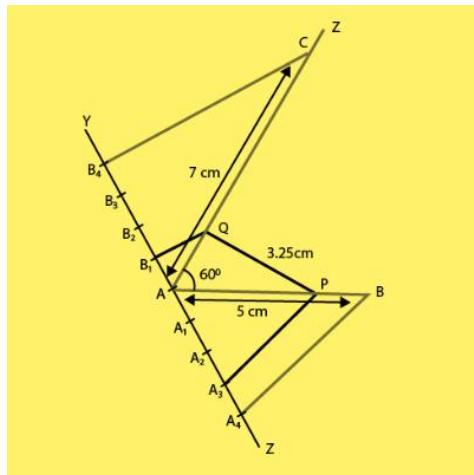
Question:

1. Two line segments AB and AC include an angle of 60° where $AB = 5 \text{ cm}$ and $AC = 7 \text{ cm}$. Locate points P and Q on AB and AC , respectively such that $AP = \frac{3}{4}AB$ and $AQ = \frac{1}{4}AC$. Join P and Q and measure the length PQ .

Solution:

Steps of construction:

1. Draw a line segment $AB = 5 \text{ cm}$.
2. Also, make $\angle BAZ = 60^\circ$.
3. With center A and radius 7 cm , draw an arc cutting the line AZ at C .
4. Draw a ray AX , making an acute $\angle BAX$.
5. Divide AX into four equal parts, namely $AA_1 = A_1A_2 = A_2A_3 = A_3A_4$.
6. Join A_4B .
7. Draw $A_3P \parallel A_4B$ meeting AB at P .
8. Therefore, P is the point on AB such that $AP = \frac{3}{4}AB$.
9. Now, draw a ray AY , such that it makes an acute $\angle CAY$.
10. Divide AY into four parts, namely $AB_1 = B_1B_2 = B_2B_3 = B_3B_4$.
11. Join B_4C .
12. Draw $B_1Q \parallel B_4C$ meeting AC at Q . We get, Q is the point on AC such that $AQ = \frac{1}{4}AC$.
13. Join PQ and measure it.
14. $PQ = 3.25 \text{ cm}$.



2. Draw a parallelogram ABCD in which BC = 5 cm, AB = 3 cm and angle $\angle ABC = 60^\circ$, divide it into triangles BCD and ABD by the diagonal BD.

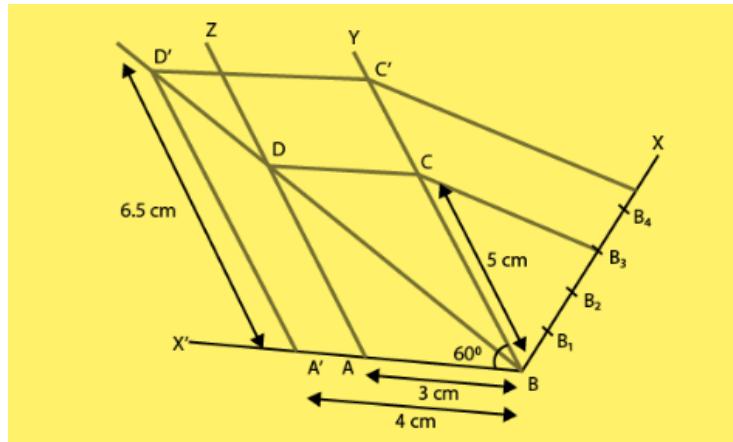
Construct the triangle $BD'C'$ similar to triangle BDC with scale factor $\frac{4}{3}$.

Draw the line segment $D'A'$ parallel to DA where A' lies on extended side BA. Is $A'BC'D'$ a parallelogram?

Solution:

Steps of constructions:

1. Draw a line AB=3 cm.
2. Now draw a ray BY making an acute $\angle ABY = 60^\circ$.
3. With centre B and radius 5 cm, draw an arc cutting the point C on BY.
4. Draw a ray AZ making an acute $\angle ZAX' = 60^\circ$
($BY \parallel AZ$, as, $\angle YBX' = \angle ZAX' = 60^\circ$)
5. With centre A and radius 5 cm, draw an arc cutting the point D on AZ.
6. Join CD
7. We obtain a parallelogram ABCD.
8. Join BD, the diagonal of parallelogram ABCD.
9. Draw a ray BX downwards making an acute $\angle CBX$.
10. Locate 4 points B_1, B_2, B_3, B_4 on BX, such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.
11. Join B_4C and from B_3C draw a line $B_4C' \parallel B_3C$ intersecting the extended line segment BC at C' .
12. Draw $C'D' \parallel CD$ intersecting the extended line segment BD at D' . Then, $\Delta D'BC'$ is the required triangle whose sides are $\frac{4}{3}$ of the corresponding sides of ΔDBC .
13. Now we draw a line segment $D'A' \parallel DA$, where A' lies on the extended side BA.
14. We observe that $A'BC'D'$ is a parallelogram in which $A'D' = 6.5$ cm $A'B = 4$ cm and $\angle A'BD' = 60^\circ$ divide it into triangles $BC'D'$ and $A'BD'$ by the diagonal BD' .

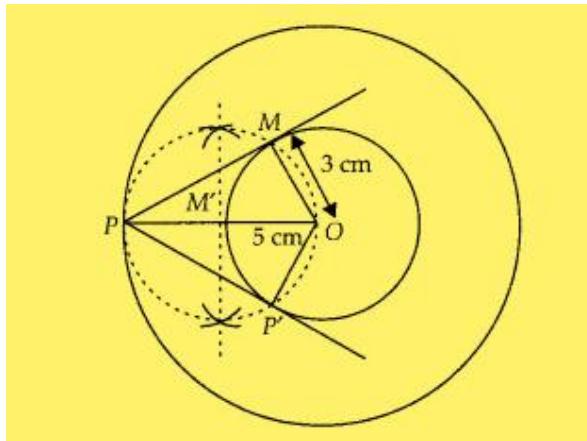


3. Draw two concentric circles of radii 3 cm and 5 cm. Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.

Solution:

We have, two concentric circles of radii 3 cm and 5 cm with centre O. We draw pair of tangents from point P on outer circle to the other.

1. Draw two concentric circles with centre O and radii 3 cm and 5 cm.
2. Taking any point P on outer circle. Join OP.
3. Bisect OP, let M' be the mid-point of OP taking M' as centre and OM' as radius draw a circle dotted which cuts the inner circle at M and P'.
4. Join PM and PP'. Thus, PM and PP' are the required tangents.
5. On measuring PM and PP', we find that $PM = PP' = 4$ cm.



Now actual calculation:

In right angle $\triangle OMP$,

$$\angle PMO = 90^\circ$$

$$PM^2 = OP^2 - OM^2$$

$$PM^2 = (5)^2 - (3)^2$$

$$25 - 9 = 16$$

$$PM = 4 \text{ cm}$$

[by Pythagoras theorem]

Therefore, the length of both tangents is 4 cm.

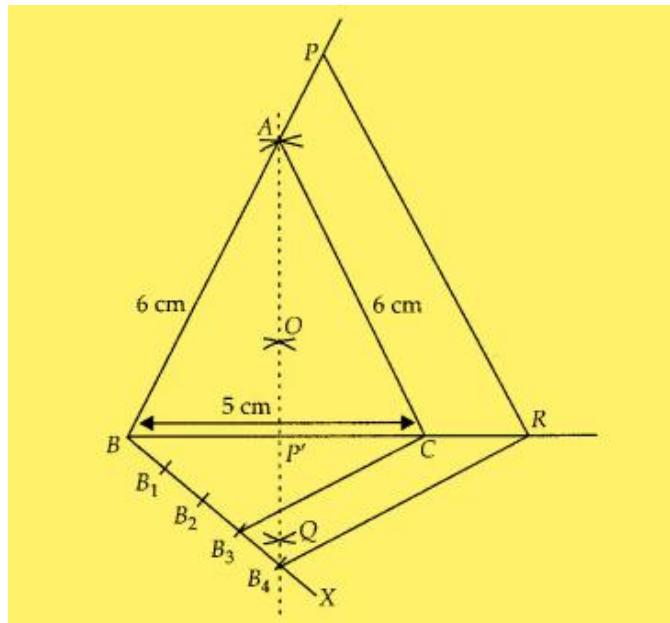
4. Draw an isosceles triangle ABC in which $AB = AC = 6$ cm and $BC = 5$ cm. Construct a triangle PQR similar to triangle ABC in which $PQ = 8$ cm. Also justify the construction.

Solution:

Let ΔPQR and ΔABC are similar triangles, then its scale factor between the corresponding sides is $\frac{PQ}{AB} = \frac{8}{6} = \frac{4}{3}$

Steps of construction:

1. Draw a line segment $BC = 5$ cm.
2. Construct OQ the perpendicular bisector of line segment BC meeting BC at P' .
3. Taking B and C as centre we draw two arcs of equal radius 6 cm intersecting each other at A .
4. Join BA and CA . So, ΔABC is the required isosceles triangle.



5. From B , we draw any ray BX making an acute $\angle CBX$.
6. Locate four points B_1, B_2, B_3 and B_4 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.
7. Now join B_3C and from B_4 draw a line $B_4R \parallel B_3C$ intersecting the extended line segment BC at R .
8. From point R , draw $RP \parallel CA$ meeting BA produced at P .

Then, ΔPBR is the required triangle.

Explanation,

As, we have,

$B_4R \parallel B_3C$

(by construction)

$$\frac{BC}{CR} = \frac{3}{1}$$

or,

$$\frac{CR}{BC} = \frac{1}{3}$$

Now,

$$\begin{aligned}\frac{BR}{BC} &= \frac{BC + CR}{BC} \\ &= 1 + \frac{CR}{BC} \\ &= 1 + \frac{1}{3} \\ &= \frac{4}{3}\end{aligned}$$

And,

$$RP \parallel CA$$

$$So, \Delta ABC \sim \Delta PBR$$

Hence,

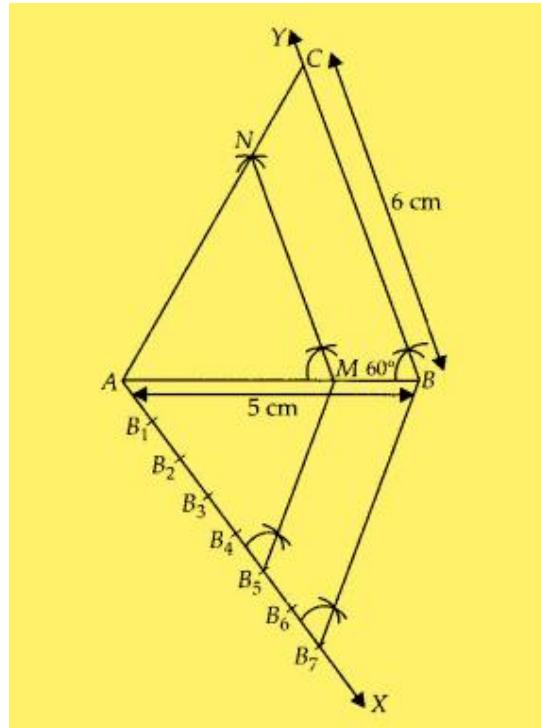
$$\frac{PB}{AB} = \frac{RP}{CA} = \frac{BR}{BC} = \frac{4}{3}$$

5. Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and $\angle ABC = 60^\circ$. Construct a triangle similar to ABC with scale factor $\frac{5}{7}$. Justify the construction.

Solution:

Steps of construction:

1. Draw a line segment AB = 5 cm.
2. From point B, draw $\angle ABY = 60^\circ$ on which take BC = 6 cm.
3. Join AC, ΔABC is the required triangle.
4. From A, draw any ray AX downwards making an acute angle $\angle BAX$
5. Mark 7 points $B_1, B_2, B_3, B_4, B_5, B_6$ and B_7 on AX, such that $AB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7$.
6. Join B_7B and from B_5 draw $B_5M \parallel B_7B$ intersecting AB at M.
7. From point M draw $MN \parallel BC$ intersecting AC at N. Then, ΔAMN is the required triangle whose sides are equal to $\frac{5}{7}$ of the corresponding sides of the ΔABC .



Explanation:

Here,

$B_5M \parallel B_7B$ (by construction)

$$\frac{AM}{BM} = \frac{5}{2}$$

or,

$$\frac{BM}{AM} = \frac{2}{5}$$

$$\begin{aligned} \frac{AB}{AM} &= \frac{AM + BM}{AM} \\ &= 1 + \frac{BM}{AM} \\ &= 1 + \frac{2}{5} \\ &= \frac{7}{5} \end{aligned}$$

Also, $MN \parallel BC$

So, $\Delta AMN \sim \Delta ABC$

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{NM}{BC} = \frac{5}{7}$$

6. Draw a circle of radius 4 cm. Construct a pair of tangents to it, the angle between which is 60° . Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.

Solution:

Steps of construction:

1. Take a point O on the plane of the paper and draw a circle of radius $OA = 4$ cm.
2. Produce OA to B such that $OA = AB = 4$ cm.
3. Taking A as the centre draw a circle of radius $AO = AB = 4$ cm.
Suppose it cuts the circle drawn in step 1 at P and Q.
4. Join BP and BQ to get desired tangents.

Explanation:

In ΔOAP , we have

$$OA = OP = 4 \text{ cm} \quad (\text{Radius})$$

Also,

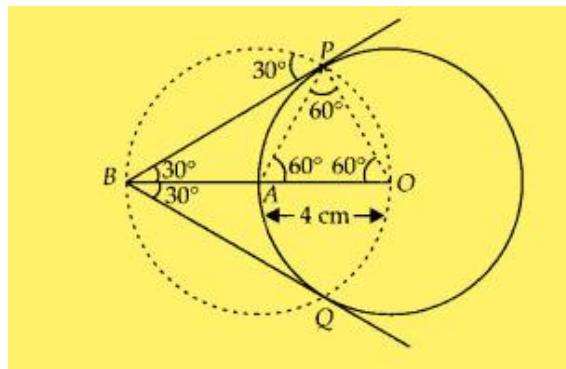
$$AP = 4 \text{ cm}$$

(As, Radius of circle with centre A)

ΔOAP is equilateral triangle.

$$\angle PAO = 60^\circ$$

$$\angle BAP = 120^\circ$$



Therefore in ΔBAP ,

$$BA = AP$$

$$\text{and } \angle BAP = 120^\circ$$

So,

$$\begin{aligned} \angle ABP &= \angle APB \\ &= 30^\circ \end{aligned}$$

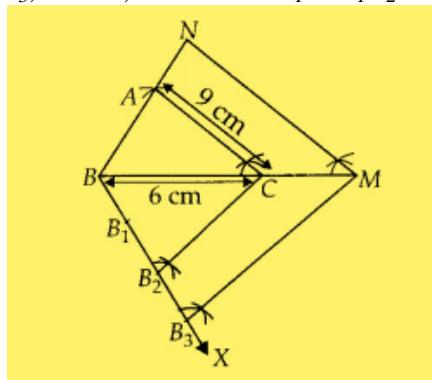
$$\angle PBQ = 60^\circ$$

7. Draw a triangle ABC in which $AB = 4 \text{ cm}$, $BC = 6 \text{ cm}$ and $AC = 9 \text{ cm}$. Construct a triangle similar to $\triangle ABC$ with scale factor $\frac{3}{2}$. Justify the construction. Are the two triangles congruent? Note that all the three angles and two sides of the two triangles are equal.

Solution:

Steps of construction:

1. Firstly draw a line segment $BC = 6 \text{ cm}$.
2. Taking B and C as centre, draw two arcs of radii 4 cm and 9 cm intersecting each other at A.
3. Join BA and CA. $\triangle ABC$ is the required triangle.
4. From B, draw any ray BX downwards making an acute angle $\angle CBX$
5. Mark three points B_1, B_2, B_3 , on BX, such that $BB_1 = B_1B_2 = B_2B_3$.



6. Join B_2C and from B_3 draw $B_3M \parallel B_2C$ intersecting BC at M .
7. From point M , draw $MN \parallel CA$ intersecting the extended line segment BA to N .

Then $\triangle NBM$ is the required triangle whose sides are equal to $\frac{3}{2}$ of the $\triangle ABC$.

Explanation:

$$B_3M \square B_2C$$

$$\frac{BC}{CM} = \frac{2}{1}$$

Now,

$$\begin{aligned} \frac{BM}{BC} &= \frac{BC+CM}{BC} \\ &= 1 + \frac{CM}{BC} \end{aligned}$$

$$= 1 + \frac{1}{2}$$

$$= \frac{3}{2}$$

Also,

$$MN \parallel CA$$

$$\Delta ABC : \Delta NBM$$

So,

$$\frac{NB}{AB} = \frac{NM}{AC} = \frac{BM}{BC} = \frac{3}{2}$$

The two triangles are not congruent because, if two triangles are congruent, then they have same shape and same size.

Therefore, all the three angles are same but three sides are not same that is one side is different.