

JK Chrome | Employment Portal

Rated No.1 Job Application of India

Sarkari Naukri Private Jobs Employment News Study Material Notifications

JK Chrome

www.jkchrome.com | Email : contact@jkchrome.com

GEOGRAPHY Mind Maps

South West Monsoon system in India - Climatology Part 1

#1 What is monsoon?

- I) Monsoons are seasonal winds. Rhythmic + Periodic and secondary wind movement
- 2) They flow from sea to land during the summer and from land to sea during winter.
- 3) These wind movements are type of large convection cells.

#2 What are it's types ?

- I) South West monsoon
- 2) The North East monsoon

#3 What are the various factors responsible for formation of South West monsoon?

- I) Differential heating effect between the ocean and land in South Asia.
- 2) Coriolis force causes the wind movement to turn right into the landmass.
- 3) Role of moisture and condensation which release latent heat and augments the differential heating produced by the land-sea contrast.
- 4) The Tibetan plateau exerts its influence both as a mechanical barrier in the atmospheric flow as well as a high level heat source.
- 5) Permanent high pressure cell in the South Indian Ocean (east to north-east of Madagascar in summer).

#4 What are the factors that influence the onset of south-west monsoons?

- The role of Jet streams Sub tropical/ Tropical Westerly Jet stream, Tropical/ Equatorial Easterly Jet stream.
- 2) Annual migration of thermally induced planetary winds and pressure belts or shifting of ITCZ (Inter Tropical Convergence Zone).

#5 What are the factors that influence the intensity of south-west monsoons?

- 1) Mascarene High(high pressure area at sea south of equator) and the Somali Jetstream.
- 2) Indian Ocean branch of Walker Cell.
- 3) Variation in the axis of the monsoon trough. Break in monsoon, the trough shifts to the base of Himalayas.
- 4) Teleconnections and see-saw pattern of meteorological change of ENSO El–Nino and Southern Oscillation Index.

(*Topics of Jet stream and El nino will be dealt in a separate Concept class)

North East Monsoon in India- Climatology Part 2/2

#I What is North East monsoon?

Withdrawal of South-West monsoon and onset of North East monsoon is a gradual phenomena (3 months), hence also called **Retreating monsoon**.

#2 Why the monsoon retreats?

- I) Low-pressure area over the north-western parts of India weakens \rightarrow gradual transition of ITCZ towards the South
- 2) High pressure starts to build up over the **Tibetan plateau** and **central Asia**.
- 3) Sun shifts towards the equator(equinox).
- 4) Eastern tropical jet stream and Somali Jet stream begin to die \rightarrow onset of Westerly jet stream

#3 What are the temperature conditions during retreating monsoon?

- 1) Rise in temperature with high humidity \rightarrow "October Heat" or "Kwar ki Umas"
- 2) The rainfall is scanty due to anti cyclonic circulations on land.
- 3) Exceptions:- rainiest months of the year in coastal areas of Tamil Nadu \rightarrow due to large indentation made by the Bay of Bengal.
- 4) Possibility of tropical cyclones and passage of cyclonic depressions.

#4 What is the variability of rainfall in India and issues related to it?

- I) Average rainfall in India 125cm; Areas of High Rainfall- west coast, Western Ghats, Khasi hills; Areas of Medium Rainfall areas of Gujarat, east Tamil Nadu, north-eastern Peninsula, northern Ganga plain, Cachar Valley; Areas of Low Rainfall N-W part of India and parts of Deccan Plateau. Areas of Inadequate Rainfall Rain shadow regions of Western ghats and cold, hot deserts of India.
- 2) More than 50% farmland rain-fed, 70% of annual rainfall in monsoon season. Low summer monsoon affects planting of Kharif crop, weak retreating monsoon \rightarrow Rabi
- 3) Low rainfall → drought, affects rural consumption, automobile, fast moving consumer goods, increases the imports of essential food staples; government measures like farm loan waivers due to political populism; increases fiscal deficit.
- 4) The Monsoon rains helps in increasing output of hydro-electric power projects in perennial river systems. The monsoon winds → wind energy in Kucch and TN coast.
- 5) The debit side, Indian economy suffers heavy losses due to floods and droughts. Farmer suicides and disaster related expenditures.

Air Mass

#1 What is air mass?

- I) Homogeneous air block \rightarrow temperature + humidity + moisture.
- 2) Extend from surface to **lower stratosphere** \rightarrow part of global planetary wind system

#2 What are the conditions for their formation?

- I) source regions \rightarrow homogeneous air masses are created
- 2) Main source regions → high pressure belts in sub tropics, poles, low-latitude deserts like the Sahara, continental interiors of North America and Eurasia.
- 3) Source region properties \rightarrow extensive, gentle, divergent air circulation, little pressure gradient
- 4) Two major types -> Tropical air mass(warm) & Polar air mass (cold); Heat exchange process occur slowly between surface and air mass.

#3 What are the characteristics of Air Mass?

- 1) Maritime air masses \rightarrow high humidity \rightarrow produce large amount of precipitation; continental air mass is dry \rightarrow produce less precipitation.
- 2) Air mass spreads over large areas \rightarrow little variation in temperature + stability + moisture
- 3) Retain its original identity & not torn apart by differences in airflow.

#4 What is the role of air mass in macro - climatic changes?

- Vertical distribution of temperature, moisture content -> weather system to change, stall + transfer of latent heat → removing latitudinal heat balance.
- Boundary zone of convergence separating the two air masses → fronts. Atmospheric disturbances originate at these fronts → Frontogenesis → Temperate cyclones are formed (*Will be dealt in a separate concept class).
- Oceanic air mass → atmospheric moisture → oceans to continents + cause precipitation over landmass → Frontal precipitation.
- 4) Dry air mass \rightarrow arid condition \rightarrow hasten the process of desertification. Ex- Sahel region
- 5) Continental Arctic air mass \rightarrow cause of extreme cold conditions \rightarrow **polar vortex**.
- 6) Air mass transport from north-west to **Delhi** → conspicuous amount of highly volatile + semi-volatile aerosols + Columns of NO2, Ozone → photo chemical **smog**.
- 7) stagnation of wind \rightarrow stable air mass \rightarrow dust + PM2.5 + PM10 particles = cloud condensation nuclei \rightarrow increases haze and smog.

Jet streams

#1 What are Jet streams?

- 1) Narrow concentrated bands + high velocity + geostrophic wind in upper troposphere
- 2) They are **circumpolar** & follow the boundaries between hot and cold air mass.

#2 What are the influencing factors & characteristics for the Jet Stream Flow?

- I) High velocity \rightarrow thermal contrast \rightarrow temperature gradient
- 2) Meandering → encircle the globe, follow a curved path →3 dimensional flow + develop crests + trough → covering a wide area → travel from west to east → "Rivers of the air" → pressure gradient force at the core
- 3) Seasonal variations + shift with the movement of the sun + Forms "Eddies"
- 4) Landmass \rightarrow friction + temperature differences (decides intensity + height);
- 5) **Coriolis** force → **centrifugal** effects; Temperature of **stratosphere** → strength + position of jet stream; Cooler stratosphere → Greater strength of jet stream

#3 What is the role of Jet stream in macro-climatic changes and associated weather phenomena?

- Role in Polar vortex → Meandering becomes extreme → temperature gradient. Global warming → warming of pole → Permanent jet streams or polar front jets → got shifted southward by depleting ozone layer
- 2) Maintains latitudinal heat balance → air mass movement + exchange
- Contain wind shear, high wind velocity→ major threat to airlines. Help airlines too. East bound flight time < Westbound flights.

#4 How does the Jet stream affect the weather system in India?

- Role in Western disturbances (from Mediterranean) → mid-latitude region → Westerly jet stream
 → low pressure system → snowfall in winter in NW parts → important for Rabi crops (Wheat); 5-10% of India's annual rainfall → changing nature resulted into disasters → Cloudbursts, landslides, flooding
- 2) Role in monsoon → Tropical Easterly Jet/ African Easterly Jet → reversal of upper air circulation pattern; Somali Jet → southwesterly → intensity of monsoon → strengthens Mascarene high; Subtropical Jet Stream (STJ) → blocks solar monsoon cell + inhibits solar monsoon → creates ridge (anticyclonic) and trough (cyclonic air movement); Burst of monsoon → STJ withdraws from sub continent → Northward movement; High Pressure due to STJ + High Pressure over Tibet = strong divergence = no rainfall in winter

Tropical cyclones

#1 What are Tropical cyclones?

- 1) Violent storms \rightarrow areas of low pressure (decides wind intensity) over ocean \rightarrow violent winds(squalls)+ torrential rainfall + storm surge
- 2) Irregular wind movement+ closed air circulation \rightarrow rapid upward movement of hot air

#2 What are factors responsible for formation of tropical cyclones?

- I) Large sea surface+ sea surface temperature > 27C; latent heat of condensation
- 2) Coriolis force \rightarrow create cyclonic vortex + direction; Weak low-pressure area+depression
- 3) Upper divergence above sea level system; Small local variations in temperature + wind speed \rightarrow lowpressure centers of small size
- 4) rising of humid air => adiabatic lapse rate => fall in temp => condensation of moisture => latent heat released => hotter and lighter air uplifted => more air fills gap => new moisture available for condensation
- 5) convergence of air masses \rightarrow spiraling circular wind (eye) & multiple convective cells

#3 What are the impacts of tropical cyclones on India?

- 1) 10% of world's tropical cyclone exposed to India; primary peak in November.
- 2) Storm surge inundates low lying areas + causes heavy floods+ coastal erosion+ destroys vegetation + reduces soil fertility → salinity increases
- 3) Gulab, Yaas and Tauktae growing intensity of wind + unconventional weather pattern → preparedness time is low → Dense population + poor capacity→ pandemic adds to problem → Public health + economic and climatic security + mangrove ecosystem
- 4) Institutional structures +insurance systems for financial protection from material loss

#4 Why more tropical cyclones occur on eastern coast?

- Higher vaporization from sea + Fresh water inflow + trough-like shape coastline + Pacific cyclones (break away typhoons) + Land on three sides → Greater heat from landmass
- 2) Flatter plain, land, emergent eastern coast prevent deflection of winds

#5 Why the frequency of cyclones in Arabian sea is increasing?

- 1) Rising sea surface temperature; Altering the cycles of El Nino (EN) and El Nino Modoki (ENM) \rightarrow creating larger area for wind convergence \rightarrow intensification of cyclonic depression in Arabian sea
- 2) Intensification of easterly winds \rightarrow Ex :- Ockhi generated in BoB-> towards Arabian sea

Plate tectonic theory

#I What is plate tectonic theory?

- I) Lithosphere broken \rightarrow floats on asthenosphere \rightarrow horizontal movement \rightarrow rigid units
- 2) Oceanic crust \rightarrow Simatic(thinner); Continental crust \rightarrow Sialic(thicker)
- 3) Movement of plates $\rightarrow\,$ convection currents in mantle $\rightarrow\,$ thermal gradient

#2 What are evidences that support plate tectonic theory?

- I) Paleomagnetism \rightarrow Polar wandering \rightarrow orientation of iron grains \rightarrow sea floor spreading
- 2) older rocks \rightarrow continents; younger rocks \rightarrow ocean floor
- 3) Gravitation anomalies \rightarrow value of gravitational constant less \rightarrow loss of material
- 4) Earthquake and vulcanism \rightarrow along plate boundaries; creation of convection cell

#3 What are the land forms formed due to plate tectonic theory?

- Convergent plate boundaries ->crumpling+folding+destruction→ orogenic collision→fold mountains → Ex:- Himalayan Boundary Fault; Zone of subduction→ trenches; volcanic arc systems + oceanic plate boundaries → island arcs;
- Divergent plate boundaries→ move away→ Mid-ocean ridges→ basaltic magma→ sea floor spreading→ East African rift valley→ shallow focus earthquake+ crust formation
- 3) Transform plate boundaries→ no creation/destruction→ deformation→ creates faults perpendicular to mid oceanic ridges→San Andreas Fault

#4 What has been the movement of Indian tectonic plate?

- 1) Present form \rightarrow tertiary geological age \rightarrow Peninsular+Australian continental portion \rightarrow boundary between India and the Antarctic plate \rightarrow oceanic ridge
- Plate tectonic→ height of Himalayas increasing; Northward movement of plate→ colliding with Asiatic plate → Makes tectonic active zone + seismic zone IV
- 3) The northward movement \rightarrow formation of Deccan trap (shield volcano)

#5 Why the frequency of Earthquakes over Delhi has increased?

- 1) Proximity to main boundary thrust fault; Release of stress by frequent collision of Indian plate and Eurasian plate; Presence of loose alluvial soil of plains amplifies the quake
- Presence of other weak zones and faults → Delhi-Haridwar ridge, Dehradun subsurface fault, Moradabad fault, etc.

Land forms- Fold mountains

#I What is a land form and what are its various types?

- Natural+artificial feature ->planetary body; Formed by internal process (uplift +sinking); External process (wearing down+rebuilding) → Erosion+Deposition→ water, ice, wind
- 2) Five major land form \rightarrow Fluvial(water)+ Aeolian(wind)+ Glacial+ Wave+ Karst
- 3) Folding, Faulting, and Vulcanism \rightarrow secondary land forms \rightarrow due to endogenic forces

#2 What are fold mountains?

- 1) sedimentary rock strata \rightarrow geosynclines \rightarrow compression forces; Folding in metamorphic rock rare \rightarrow hard +brittle \rightarrow break \rightarrow reverse fault \rightarrow mark plate boundaries
- 2) Fold \rightarrow undulating structure \rightarrow multiple layers \rightarrow upward convex(anticline) \rightarrow downward convex(syncline)

#3 What are the types of fold mountains?

- I) Origination \rightarrow Very old, old fold, alpine young fold (rugged, lofty, conical)
- 2) Nature of fold \rightarrow Simple (syncline+ anticline); Complex (detached folds 'nappe')

#4 What are the characteristics of fold mountains?

- Rock type→ sedimentary rocks→ marine origin→ deposition+ consolidation; shallow water deposits; Recurrent seismicity;
- 2) May or may not have volcanism \rightarrow volcanic rocks of ancient times;
- 3) Youngest mountains \rightarrow lofty \rightarrow width small \rightarrow granite intrusion; concave+convex slope

#5 Why the fold mountain systems located along the margins of continents?

- 1) Folding + uprising sediment; ocean-continent collision; continent-continent collision;
- 2) Over thrust folds \rightarrow Further folding \rightarrow fracture \rightarrow Nappe; Upper layer slides over lower
- layer \rightarrow energy released \rightarrow Earth quakes; Convergence of denser plates \rightarrow release magma from mantle region \rightarrow high pressure \rightarrow continental plane;

#6 What are the effects of fold mountains on human life?

- $\label{eq:limit} \mbox{I) Impact climate} \rightarrow \mbox{Vegetation} \rightarrow \mbox{Orographic rainfall} \rightarrow \mbox{unique ecosystem} \rightarrow \mbox{flora+fauna;}$
- significant economic importance → Tourist spots+ adventure sport; Hydro Electric Power→ steep slope → Hinterland connectivity; de-carbonise;
- 3) Prone to landslides, flash floods \rightarrow loose soil+ gravitational pull+ due to steep slope

Himalayan System – Part 1 of 2

#I How did Himalayas originate?

- 1) Plate tectonic theory \rightarrow Indian+ Eurasian plate \rightarrow great geosynclines \rightarrow Tethys sea; Some Himalayan river older than Himalaya.
- 2) Tethys sea \rightarrow Marine limestone \rightarrow summit of peaks \rightarrow Tibetan plateau \rightarrow upthrusting
- line of collision → Tibetan Plateau+ Indian Plate → Indus-Tsangpo Suture Zone → compression tectonic fault; Further south- Murree Foredeep, Shiwalik foredeep
- 4) Relief structure → Tibetan plateau|Indus –Tsangpo Suture Zone→ Tethyan/Trans Himalayas→ Great Himalaya|MCT| Lesser Himalaya→ MBF| Shivalik → HFF| Plains

#2 What are the different Himalayan ranges?

- $\label{eq:linear} I) \quad \mbox{Parallel/converging ranges} \rightarrow \mbox{dissected topography} \rightarrow \mbox{southern slope} \rightarrow \mbox{steep gradient}$
- Trans/Tibetan Himalaya → Zaskar, Ladakh, Kailas, Karakoram → East-west direction →Indus→ Northern slopes Kailas range; Karakoram→greatest glaciers outside pole
- 3) Great/Himadri Himalaya→ (a) central crystallines (granites+ gneisses), (b) metamorphosed sediments symmetrical+ steep slope, (c) convex to south → ends at syntaxial bends (Nanga Parbat in north-west + Namcha Barwa in north-east)
- 4) Middle/Lesser Himalaya→ (a) steep, bare southern slopes [prevents soil formation], (b) gentle, forest covered northern slopes; (c) Pir Panjal range→ Jhelum to Beas → Continuous hence need passes(Banihal); (d) Kashmir valley→ synclinal basin + alluvial, lacustrine [lake deposits], fluvial [river action], glacial deposits; Jhelum river→ deep gorge in Pir Panjal; Kangra→ strike valley; Kulu→ transverse valley.
- 5) Shivalik range → Potwar plateau-Brahmaputra valley; Tista river; Valley- syncline; hills → anticline; Southern slope→ devoid of forest, dissected streams→ Chos; Duns
- 6) Purvanchal/ Eastern hills→ Dihang gorge → Himalayas southern bend→ convex to west → sandstone; Jaintia, Khasi and Garo → eastward→ Indian peninsular block

#3 What are the characteristics of Longitudinal vision Himalayas?

- I) Kashmir Himalaya→ Karewa formation→ Lake deposits→ Clay+silt+sand→ glaciation→ cultivation of Zafran; (b)Nepal Himalaya → Tallest section; (c) Sikkim Himalaya- Jalep La Pass- Tri junction of India-China-Bhutan;(d) Assam Himalaya→ formation of Duar; Diphu Pass Tri junction of India-China-Myanmar;
- 2) Eastern Himalayas snowline at higher altitude; Western Himalayas→ lower, gradual slope→ peaks far away from plains→ climatic conditions moderated on plains

Himalayan System – Part 2 of 2

#I What are the economic significance of Himalayas?

- Agriculture → Horticulture crops [apple, citrus, peach, plum]; Shivalik range-> Eastern Himalayas suited for Tea; Kashmir Himalaya- Saffron cultivation; Pine tree- resins, pulp
- 2) Mineral resources → coal+oil reserve; Metallic ores [Copper, lead, zinc, nickel, cobalt, antimony, tungsten]+precious stone;
- 3) Energy → small and micro hydro electric energy; Regional Integrated Energy Plans decentralize renewable→ spatiotemporal variability→ local demands
- 4) Tourism \rightarrow pilgrimage+leisure+adventure tourism \rightarrow multiplier-effect

#2 How can the effects of Climate change on Himalayas be reduced?

- 1) Influence precipitation, rainfall \rightarrow runoff pattern \rightarrow downstream water availability
- 2) Black carbon→ accentuating glacial melting; Measures→ fuel-efficiency standards, efficiency of brick kilns, Cleaner cook stoves, fossil fuel to renewable energy sources
- 3) Increased frequency + magnitude → extreme weather events- high intense rainfall, flash floods, landslides and debris flows, Glacial lake outburst floods (GLOF)
- 4) Shrinking Permafrost→ altered hydrological cycle, vegetation composition, carbon dioxide and methane fluxes→ increased seasonal thawing→ instability+erosion→ activation of soil carbon pool→expansion of non-permafrost→ desertification increase
- 5) Fragmentation of habitat+ecosystem→ shifts in the latitude of forest boundaries + upward movement of tree line → change in species and vegetation composition

#3 What steps need to be taken to resolve issues arising out of tourism industry?

- Indian Himalayan Region (IHR) ~ 71.5 billion\$ to GDP; Some states ~ 10%GDP; Investment is less; Unsustainable models of tourism; informal sector; loss of forest
- 2) Non-climatic issues → human wildlife conflicts, water insecurity, land degradation→ sociodemographic change (out-migration-Ghost Villages of Uttarakhand), solid waste, air pollution; (b) Synergy deficits - investments + interventions synchronised
- 3) Balanced economy+long term preservation+ sensitive to needs of host population
- 4) community-based, tourism management committees (b) sector centric forest policy; (c) waste management, marketing, and branding and tourism enterprise development (governance) (d) overcoming fragility, marginality, and inaccessibility by upstream-downstream linkages of cultures and ecosystem services

#4 What is the cultural significance of Himalaya?

- 1) Livelihood of tribal \rightarrow fuel wood + Minor forest produce \rightarrow new farming practice and water demand management; high-altitude wetlands, sacred grooves
- Composite of several cultural cosmoses→ High Altitude → nomadic and dispersed; Mid Altitude-sedentary zones, village settlements; Low altitude and foothills- 'slash and burn' cultivation+ terrace farming;
- 3) Monastery [Tabo,Hemis]+spiritual significance; Rich weaving + tapestry work[Pashmina]

Western Ghats Part 1

#1 How are the Western Ghats formed?

- I) Western edge \rightarrow Deccan table land; Steep sided (escarpment) + terraced + flat topped hills
- 2) Horizontally bedded lava \rightarrow stepped/ landing stair feature; Abrupt rise \rightarrow Coastal plain
- 3) Slope gently on Eastern side; Southern side \rightarrow separated by Rift valley
- 4) Older than Himalaya and Eastern ghats → Spread over six states; Continuous Range → Passes → Thal, Bhor, Pal, Senkota; 3 coasts → Konkan + Kanara + Malabar

#2 What are the effects of Western ghats on climatology of India?

- I) Altitudinal gradation \rightarrow Montane forest ecosystem + Warm tropical humid climate
- 2) Role in Monsoon \rightarrow Key barrier \rightarrow South western Monsoon; Orographic rainfall \rightarrow create rain shadow regions \rightarrow Vidarbha,
- Hydrological role → Origination → peninsular rivers [Krishna, Kaveri, Godavari, etc] → Water tower and watershed of Peninsula;
- 4) Evolutionary **Ecotone** \rightarrow speciation related to Gondwana land \rightarrow Out of "Asia and Africa"

#3 What are the biodiversity significance of Western ghats?

- Montane forest ecosystems, Moist deciduous, Tropical evergreen, scrub forest, High Myristica swamps – unique vegetation types
- 2) High degree of endemism + species richness; one of the 8 Hottest Hotspots; 6% land 30% fauna; Varation in endemism \rightarrow latitudinal length of dry season gradient + temperature-elevation gradient; endemism higher \rightarrow short dry season + higher altitudes
- 3) Endemic Fauna species \rightarrow Lion-Tailed Macaque; Nilgiri Tahr; Malabar Civet;
- 4) Shola forest- isolated compact evergreen patches \rightarrow folds of rolling downs \rightarrow moisture content is high \rightarrow stunted trees

#4 What are the biological hot spots of Western Ghats?

- I) Nilgiris- First biosphere reserve → Confluence of Biotic zones (Afro-tropical and Indo-Malayan); Tributaries of Kaveri→ Bhavani, Moyar, Kabini;Confluence of → Mudumalai WS + Wayanad WS, Bandipur NP + Nagarhole NP + Mukurthi NP + Silent Valley
- 2) Silent valley → Tropical rain forest → high and continuous ridges + steep escarpment → shielded from extreme climate → ecological island → special micro climate; River Kunthipuzha flows; Home of Lion tail Macaque(endangered); Silent Valley Movement → against hydro electric project in 1973
- 3) Part of project Elephant + project tiger

Western Ghats Part 2

#1 What are the economic significance of Western ghats?

- I) Subsistence \rightarrow World heritage site; Particularly Vulnerable Tribal groups- Toda, Irula etc. \rightarrow ethos of livelihood; Non timber forest produce, medicinal plants
- 2) Rich in -> iron, manganese, bauxite ores;
- 3) Pepper, cardamom, coffee, rubber, tea \rightarrow plantation crops
- 4) Tourism (Ooty, Waynad) + Pilgrimage centers (Sabarimalai, Mahabaleshwar)

#2 What are the effects of Climatic change on Western Ghats?

- I) Impact on precipitation → erratic and localized rainfall → North South variability in rains; Drought in areas of Krishna, Kaveri basins; flooding, landslides
- 2) Impact on agriculture → Rain fed agriculture → reduced yield; plantation crop → hastened soil drying, soil cover loss; reduction in local variety of crop
- **3) Impact on forest** \rightarrow Net Primary productivity reduced
- 4) Impact on Biodiversity → Species loss → constricted gene pool → climate stress → fragmentation of habitat (Ex- endemic brown mongoose)

#3 How can Western ghats be saved from ongoing destructive development?

- 1) Linear infrastructure projects \rightarrow unscientific construction + urbanisation
- 2) Unsustainable mining activities \rightarrow Iron ore extraction (Goa) \rightarrow Sand Mining (Kerala)
- 3) Indiscriminate promotion of tourism \rightarrow Solid waste generated \rightarrow recycling \rightarrow hard metals
- 4) Increasing Landslides; destruction of riparian forest + tree cover; river regime affected
- 5) Construction of dam \rightarrow Proper EIA \rightarrow Natural and free flowing river maintained;
- 6) Projects avoid \rightarrow Deforestation; Prior informed consent \rightarrow locals; social audit incorporate
- 7) Community + traditional water harvesting; watershed measures; Rice intensification
- 8) Increasing Human wildlife conflict \rightarrow Bhadra Wildlife Sanctuary \rightarrow 11% of grain loss

#4 What are the recommendations made by different committees?

- Gadgil Committee report (WGEEP) → entire hill range → Ecologically Sensitive Area (ESA) and Ecologically Sensitive Zones (ESZ); Proposes → Bottom (Gram Sabha led) to Top approach; Establishing a Western Ghats Ecology Authority;
- 2) Kasturirangan committee Report → complete ban → mining + quarrying + sand mining in ESA; 37% area as ESA; Distinguished between 'cultural & natural landscape (41% area)'; monitoring agency set up;
- 3) MoEFCC + NGT \rightarrow "No go Zone" \rightarrow phasing out mines within 5 years
- Need to understand → distributional patterns+ habitat requirements+ financial incentives + sustainable farming + incentive schemes + payments for ecosystem services (REDD+)

Himalayan River system part 1

#1 What is the Himalayan drainage system?

- I) River originating \rightarrow Himalayan + trans-Himalayan range;
- 2) Three major river system→ Ganga; Brahmaputra; Indus;

#2 What are the features of Himalayan river system?

- I) Melting snow + Precipitation \rightarrow Perennial;
- **2) Upper reach** \rightarrow Youthful stage \rightarrow Gorges, V-shaped valleys, rapids, waterfalls etc.
- 3) Middle part → Plains→deposition features → Meandering → flat valleys, ox-bow lakes, flood plains, braided channels, deltas

#3 How are the Himalayan River system formed?

- 1) Shiwalik \rightarrow entire longitudinal extent \rightarrow Assam to Punjab (lacustrine origin and alluvial deposits) \rightarrow dismembered into three drainage
- Dismemberment → Pleistocene upheaval+ Western Himalaya+ uplift of Potwar Plateau (Delhi Ridge) → act as water divide → Indus/Ganga River system
- 3) Down thrusting \rightarrow Malda gap \rightarrow Rajmahal Hill; Meghalya Plateau \rightarrow Bay of Bengal drainage

#4 What is Indus River water system?

- 1) River basin \rightarrow One third India (Jammu & Kashmir, Himachal Pradesh, Punjab)
- **2) Origin -** Glacier \rightarrow near Bokhar Chu -> Kailash Mountain range (Tibet called Singi Khamban)
- 3) Course- Enters India- Damchok → Flows → Leh → Deep gorge → Enters Pakistan (Chillar, Dardistan) → deep gorge → hair pin bend → Discharge → Arabian sea
- 4) Major Right-bank tributaries → Shyok, Kabul, Gilgit, Khurram, Kunar, Hunza, Tochi, Nubra
- 5) Left-bank tributaries \rightarrow Zaskar; '**Panjnad**' \rightarrow joins at Mithankot \rightarrow five rivers \rightarrow Satluj, Beas, Ravi, Chenab, Jhelum

#5 What are the features of the Panjnad system?

- $\textbf{I) Jhelum} \rightarrow \text{rise} \rightarrow \text{Verinag} \ (\text{Pir Panjal}) \rightarrow \text{Navigable in some part; Tulbul Navigation Project}$
- 2) **Chenab** \rightarrow Chandra + Bhaga \rightarrow Originate \rightarrow Bara Lacha pass (Lahaul) \rightarrow largest tributary \rightarrow Indus; Flows between \rightarrow Pir Panjal – Greater Himalaya; Important project \rightarrow Baglihar
- 3) **Ravi** \rightarrow Rises Rohtang pass \rightarrow flows \rightarrow Chamba valley \rightarrow drains Pir Panjal- Dhauladhar;
- 4) Beas \rightarrow originate- Beas kund; Meets Sutlej \rightarrow Harike; Only river of Panjnad that lies entirely in India;
- **5)** Satluj \rightarrow Originate \rightarrow Rakas Lake (near Mansarovar) \rightarrow Passes through Shipki La \rightarrow Antecedent River \rightarrow Canal system of Bhakra Nangal; Sutlej-Yamuna Link (SYL) canal
- 6) SYL canal issue→ b/w Punjab & Haryana; 1960 Indus water treaty → 'free and unrestricted use'; 1966 → Creation of Haryana → Green revolution; Water stress grew; Punjab refusal → Riparian principle; 2020 → Punjab → Tribunal → time bound assessment

Himalayan River system part 2

#1 What is the Ganga River System?

- 1) Largest \rightarrow 26.3% geographical area,10 states; Ambala water divide \rightarrow Indus and Ganga
- Rises → Gangotri glacier near Gaumukh (Uttarakhand) → Bhagirathi; Devprayag → Bhagirathi + Alaknanda; Enter plains → Haridwar; Allahabad → Ganga + Yamuna; Rajmahal hills, Ganga → bifurcates at Farakka into Hugli in West Bengal, Padma → Bangladesh
- 3) Left bank tributaries \rightarrow Ramganga; Gomati; Ghaghara; Gandak; Kosi; Mahananda
- 4) **Right** bank tributaries \rightarrow Son, Yamuna (originates \rightarrow Bandarpunch; longest tributary)
- 5) **Chambal** \rightarrow Badland topography, **Kosi** \rightarrow braided + shifting course \rightarrow Sorrow of Bihar

#2 What are the features of Brahmaputra River System?

- I) $\boldsymbol{Origin} \rightarrow Chemayungdung glacier of Kailash range near Mansarovar Lake.$
- Tibet → Tsangpo; Hair pin "U" turn → Namcha barwa; Dihang/Siang gorge; Tista + Brahmaputra → Jamuna (Bangladesh);
- 3) Left bank \rightarrow Dihing, Dhansari, Kalang; **Right** bank \rightarrow Subansiri, Sankosh, Kameng, Manas
- 4) Forms canyon → Tibet; Majauli island → world's largest riverine island + India's first island district; Excessive meandering → Duars;

#3 How is the ecological flow of Himalayan Rivers being affected?

- I) Changing river regime \rightarrow **drying** of springs (90% water); receding glaciers; deforestation
- 2) Drilling, tunneling, blasting \rightarrow run river hydro project \rightarrow sedimentation \rightarrow bed-load change
- Pressure on land-use; depleting groundwater reserves; growing consumption demands → migration + settlement patterns change; reduction of temporal spread of rainfall
- 4) Identifying recharge areas + developing local capacity + incentivizing rainwater harvesting
- 5) Check dams, percolation ponds, injecting water into aquifers

#4 What are the various steps that can be taken to clean Ganga?

- Classifications of Mini + Micro Projects; Maintaining base flow/natural flow; nirmaldhara + aviraldhara; Preserving natural ecosystem → Gharial → chambal river
- Policy of Zero discharge→ Reuse + Recycle→ grey water, natural manure; Non-Point sources → organic/natural farming;
- 3) Eco-hostile river-front development; minimum interference +minimum ecological flow;
- 4) Namami Gange → multi-sectoral + multi-dimensional +multi-stakeholder; 100% share central sector scheme; Three level (a) Entry level → river surface cleaning (b) Medium term → arresting the municipal and industrial pollution (c) Long term → determination of e-flow, increased water-use efficiency + improved efficiency of surface irrigation

+ improved efficiency of surface irrigation.

Peninsula River system

#1 What is the Peninsula River System?

- I) **Older** than Himalayan drainage \rightarrow broad, largely-graded shallow valleys \rightarrow Maturity
- 2) Concordant drainage pattern \rightarrow non-perennial+rain fed; Fluvial land forms;
- 3) Almost reached-> base level river profile; Vertical down cutting \rightarrow negligible

#2 How are the peninsular river systems formed?

- 1) **Origin** \rightarrow a) Subsidence of \rightarrow western flank of Peninsula; b) Upheaval of the Himalayas; c) Slight tilting of the Peninsular block \rightarrow causing subsidence \rightarrow rifts (trough, faults)
- 2) Earlier \rightarrow Sahyadri-Aravali axis \rightarrow water divide; Cause east + west flowing river systems
- 3) Straight coastline+ absence of delta formations on the western coast

#3 What are the different components of peninsular river systems?

- East flowing river → Bay of Bengal River system → Mahanadi (tributary→ Seonath, Jonk, Hasdo, Mand, Ib, Ong, Tel) + Godavari (tributary → Manjira, Penganga, Wardha, Wainganga, Pranahitha, Indravat) + Krishna (tributary → Kali Ganga, Koyna, Warna, Panchganga, Dudhganga, Ghataprabha, Malaprabha, Tungabhadra) + Cauvery (Tributary → Harangi, Hemavati, Bhavani, Kabini, Noyyal, Arkavathi, Shimsha) flow eastwards → drain Bay of Bengal → make deltas at mouth
- 2) West flowing river \rightarrow Narmada, Tapi, Mahi \rightarrow estuary formation \rightarrow short course + drains fast into the sea + high inclination \rightarrow hard rock \rightarrow no distributary
- 3) Rivers draining into Ganga \rightarrow **Chambal**, Ken, Betwa, Son, Damodar \rightarrow bad land topography

#4 How are the Peninsular River system different from Gangetic River system?

- Originate → Peninsular plateau, no glacial activity, variability in river regime → precipitation; waterfall at any course
- 2) Small basin + catchment area; flow in shallow valleys; little erosion activity; fixed course; absence of meanders, old plateau shields; not flood prone
- 3) Consequent drainage; superimposed; rejuvenated \rightarrow trellis; rectangular; radial pattern
- 4) Western ghats \rightarrow water divide; Western ghats \rightarrow formation of springs; steep slope

#5 What are the importance of Peninsular River systems?

- Increases water availability → rain shadow regions; groundwater recharge; Delta formation→ biodiversity → Krishna + Godavari delta; Ex: Kaleshwaram Lift multi-purpose irrigation project (World's largest Irrigation + Drinking Water System + transportation);
- 2) Inland + national waterway \rightarrow Ex: River Godavari + Krishna \rightarrow Kakinada- Puducherry
- 3) River basin \rightarrow **agricultural** bowl; Kaveri \rightarrow TN, Lower Karnataka \rightarrow rice bowl;
- 4) Hydroelectricity projects \rightarrow Ex: **Polavaram** Hydro Electric Project; Nagarjuna Sagar
- 5) Cultural significance → Narmada valley project+Sardar sarovar project → River basin approach; Ecological cost/impact → Submerging Forest + agricultural land → Displacement Catchment area treatment → Narmada Bachao Andolan

Soil System of India - Part 1

#1 How are soils Formed?

- I) Pedogenic Processes \rightarrow Addition + Losses + Translocation + Transformations
- Acted by → climate + organisms; Passive factors → Parent material + Climate (role of precipitation + temperature) + Biota + Topography + Time

#2 What are the different characteristics of soils?

- 1) **Colour** \rightarrow physical + chemical characteristics \rightarrow Ex: Humus rich (dark); Red yellow (iron)
- 2) **Texture** \rightarrow coarseness/fineness of mineral matter; 3 major \rightarrow Clay, Silt, Sand
- 3) Texture affects \rightarrow water content, water flow, retention of nutrients, aeration extent.
- 4) Structure → arrangement→ Permeability (greatest in sandy soils, poor in clayey soils) + Porosity (Clay → Porous but not permeable; granite → non-porous but permeable)
- 5) Chemistry \rightarrow soil acidity (humid), alkalinity (arid, semi-arid), neutrality

#3 What are the different classifications of soil found in India?

- I) Ancient India \rightarrow Urvara \rightarrow fertile; Usara \rightarrow sterile;
- 2) ICAR classification of soils \rightarrow Inceptisols, Entisols, Vertisols, Aridisols, Ultisols, Etc.
- 3) On basis of dominant features \rightarrow Zonal soil; Azonal soil; Intra Zonal soil
- 4) Colour/Composition \rightarrow Alluvial, Black, Laterite, Red and Yellow, Saline, Peaty, Forest, Arid

#4 What are Alluvial soils?

- 1) Formation \rightarrow debris, sedimentation \rightarrow silt of Tethys Sea \rightarrow Azonal soil;
- 2) Areas → Northern plains + river valleys → narrow corridor → extend to Rajasthan, Gujarat; Peninsula → delta east coast + river valley; Upper + middle Ganga plain → Khadar + Bhangar
- 3) **Texture** \rightarrow Sandy loam to clay \rightarrow Sand content decrease west east
- 4) **Colour** \rightarrow light grey- ash grey; Depends on \rightarrow Depth of deposition + texture + maturity
- 5) Transported soil \rightarrow Lack humus + nitrogen [Except: Sunderban delta]; Rich \rightarrow Potash+ lime
- 6) Soil profile \rightarrow no stratification; certain areas \rightarrow covered \rightarrow unproductive wind-borne \rightarrow Loess

#5 What are the importance of Alluvial soils?

- 1) New alluvium \rightarrow rich organic matter; Periodic flooding \rightarrow rejuvenation \rightarrow soil fertility. Ex: Zuni people in southwestern US;
- 2) Requiring \rightarrow least water \rightarrow high porosity. India \rightarrow 46% of total area of India
- 3) Major crops grown \rightarrow rice, wheat, sugarcane, tobacco, maize, cotton, soybean, jute, etc.
- 4) Three dimensional riparian areas → Ecotone → Terai regions → ground water recharge; Biodiversity → flood plain → Wetland
- 5) Urban development \rightarrow Low slopes \rightarrow wide valleys \rightarrow easy to excavate \rightarrow population density
- 6) Fine particle \rightarrow clay; Brick making + Pottery; Gravel nature \rightarrow road aggregate + construction

Soil system of India - Part 2

#I What are Black Soils?

- I) Regur soil \rightarrow 'tropical chernozems'; Deccan traps \rightarrow Formation \rightarrow Zonal soil
- 2) Maharashtra, MP, Gujarat, Andhra Pradesh, Tamil Nadu \rightarrow Regions of Deccan plateau
- 3) **Texture** \rightarrow Calyey \rightarrow deep + **impermeable** \rightarrow high water retention capacity
- 4) **Colour** \rightarrow Black \rightarrow Iron + Aluminium compounds + humus; Fertile soil; Thick \rightarrow lowlands;
- 5) Soils swell \rightarrow Sticky \rightarrow wet; Dry \rightarrow wide cracks; **self-aeration/ploughing** \rightarrow absorb Nitrogen;
- 6) **Chemical** \rightarrow Rich \rightarrow lime, iron, magnesia, alumina; Poor \rightarrow phosphorous, nitrogen
- 7) **Crops** \rightarrow highly productive \rightarrow cotton, pulses, millets, linseed, tobacco, sugarcane, citrus fruits

#2 How are Red Yellow and Laterite soils different?

Red yellow	Laterite soil		
Formation \rightarrow granites, gneisses, metamorphic rocks; well drained conditions, zonal soil	Formation \rightarrow high flat erosion surface \rightarrow High, seasonal rainfall; leaching \rightarrow Zonal soil		
Areas \rightarrow piedmont zone \rightarrow Western Ghats; Southern middle Gangetic plain;	Areas \rightarrow Higher Peninsular plateau; Karnataka, Kerala, TN, MP		
Colour \rightarrow Red; Diffusion \rightarrow Iron \rightarrow crystalline + metamorphic rock; yellow \rightarrow Hydrated	Reddish brown → iron oxide; lime + silica leach <mark>ed; humus co</mark> ntent removed→ drought		
Porous , friable, poor \rightarrow Nitrogen, humus, airy + need irrigation; intense leaching	Low in fertility; humus decomposed ; Poor \rightarrow organic matter; Rich \rightarrow Iron oxide; potash		

#3 What are the importance of Black, Red, Yellow and laterite soils ?

- Black soil → cereal production + pasture + range + forage system → food security; high soil organic carbon (SOC) content → greenhouse gas + mitigate climate change;
- 2) Laterite soil \rightarrow soil stabilization \rightarrow construction material \rightarrow low-cost road, buildings
- 3) Red soil \rightarrow 13% global abundance; Largest in India; Millet production

#4 What are the different irrigation methods that the soil system require?

- 1) Well Water Irrigation system \rightarrow deep + shallow \rightarrow red soils \rightarrow drained in wet season;
- 2) Inundation Irrigation system \rightarrow Alluvial deposits \rightarrow Canal irrigation;
- 3) Micro → Sprinkler, Drip Higher Cropping + irrigation intensity; Water use efficiency → energy efficiency; off grid farmer → diesel + solar pump; Fertiliser use efficiency; increasing crop productivity → quality + quantity; inter cropping + crop rotation + fertigation; doubling farmer's income → overcome land salinization + degradation → Sustainability
- 4) Challenges Variability in energy demand + low awareness + expensive set up cost
- 5) IoT based Smart Irrigation system \rightarrow Precision agriculture \rightarrow Hydroponic + Aquaponic

Soil system of India - Part 3

#1 How can soil erosion be reduced?

- I) Natural + anthropological process; Medium Water \rightarrow Sheet + Rill + Steam + Coastal
- 2) 90% \rightarrow water \rightarrow Hydro dynamic force; Rill + Gully erosion \rightarrow Punjab \rightarrow Chos;
- 3) Reason → Rainfall Erosivity + Soil Erodibility + Topography + Soil surface cover + deforestation +
 Overgrazing + Faulty practices of agriculture+ road construction+ land use changes
- 4) Consequences → Primary sector + qualitative loss of productivity → economy; agriculture; loss of nutrient; Siltation → reduce water holding capacity-> flooding; wetland → reduce
- 5) Conservation → contour tillage + bunding + check dams + terrace farming + checking the extension of gullies + strip cropping + shelter belts + afforestation + ban shifting cultivation, controlled grazing + mixed cropping + mixed farming +rotation of crops + mulching
- 6) Gov steps → Drought Prone Area Programme (DPAP) + Desert Development Programme (DDP) + Integrated Wasteland Development Project (IWDP) + PMKSY + Rural development

#2 How is increasing soil salinity affecting food security?

- 1) **Reasons** \rightarrow Irrigation, poorly drained + evaporation, leaching of salt, water table shallow+ seepage zones, over use of fertilizer, over extraction groundwater; sea water intrusion
- 2) Outcome → Chemical composition → natural water resources; poor soil structures; loss of fertile soils; yield + productivity reduces; Taxonomic replacement → halo-tolerant species;
- 3) Food security → reducing net cultivable area + choice of cultivable crops reduce + uncertain+ unstable livelihood security; low incomes;
- 4) Remedial measures → Nutrient based subsidy program, Pramparagat krishi vikas yojna, improving drainage, reducing surface evaporation, chemical treatments Gypsum

#3 How is changing nature of land use causing soil desertification India?

- 1) Land degradation \rightarrow climatic variations + human activity + population pressure on land pastoralism versus Sedentary cultivation; urbanization \rightarrow lake capture; forest fires
- 2) **Outcome** → downward spiral of worsening degradation, poverty; rural migration → impoverishing cultural identity+ abandoning traditional knowledge, intercultural conflict
- 3) Suggestions→ irrigation facilities + ground water management + recharge; afforestation → suiting local needs; sand fences, shelter belts, woodlots, windbreaks, land reclamation Nutrient management, crop diversification→ Millet + legume intensification
- Command Area Development Programme, National Afforestation Programme, National Action Programme to Combat Desertification, Bonn Challenge → land restoration and reclamation.

Ocean currents

#1 How are oceanic currents formed?

- I) Ocean water movement \rightarrow Horizontal \rightarrow waves + currents; Vertical \rightarrow Tides + Up welling;
- 2) Ocean current \rightarrow homogeneous block \rightarrow definite path + direction; **Primary** force \rightarrow heat + wind + gravity + Coriolis; **Secondary** force \rightarrow Temperature + salinity difference
- 3) Solar insolation \rightarrow Heat \rightarrow expansion; Winds \rightarrow magnitude, direction; Gravity \rightarrow water down + gradient variation; Coriolis force \rightarrow right \rightarrow Northern hemisphere and Left \rightarrow Southern
- 4) Secondary forces \rightarrow vertical mobility; High salinity \rightarrow Denser \rightarrow Sinks; Cold water \rightarrow Sinks

#2 What are the characteristics of oceanic currents?

- Types → Depth → Surface + deep water (variation → Density + gravity); Temperature → Cold (high → Low latitude) + warm (warm → cold, low + middle latitudes); thermo - haline circulation
- 2) Northern hemisphere \rightarrow clockwise; Southern hemisphere \rightarrow anti clockwise;
- 3) Warm currents \rightarrow cool sea; Cold currents \rightarrow Warmer seas; Convergence + Divergence;
- 4) Shape + geography \rightarrow land forms; Some names of Currents

Boundary	Atlantic Ocean		Pacific Ocean		Indian Ocean
	North	South	North	South	
West→ warm	Gulf stream	Brazil	Kuroshio	East	Somali, Agulhas
				Australian	Mozambique
$East \to Cold$	Canary	Benguela	California	Peru	West Australian

#3 How the oceanic currents results into Climatic changes across the globe?

- 1) Off-shore trade wind desert \rightarrow Sahara, Kalahari, Mojave, Monte, Peru, Great Sandy
- 2) Western coast \rightarrow Sub-Tropical High Pressure Belt \rightarrow descending air, relative humidity low,
- 3) Cold current \rightarrow mists, fogs; Desiccating effect \rightarrow cold Peruvian Current \rightarrow Chilean coast;
- 4) Warm current \rightarrow heavy rainfall + high humidity \rightarrow High evaporation; increase cloud cover

#4 What are the effects of oceanic currents on human activities?

- 1) Fishing \rightarrow Mixing \rightarrow cold + warm \rightarrow richest fishing ground; Ex: Grand Banks, Japan coast
- 2) Replenish oxygen \rightarrow growth of Plankton; Climate moderation, Precipitation, Growth \rightarrow coral
- 3) Navigation \rightarrow aided by Current \rightarrow Strong near Surface; Ships follow routes;
- 4) Rain fed crop cultivation → agricultural activities, Forestry (lumbering activities), Grassland ecosystem → encouraged pastoralism, Desert Safari tourism → Namib desert

Iron and Steel Industries

#1 What are the factors that influence location of iron and steel industry?

- I) Raw material \rightarrow Source, heavy + weight losing raw material. Ex: TISCO Chota Nagpur
- 2) **Markets** \rightarrow heavy + bulky, transportation cost \rightarrow high; minimize transportation cost
- 3) Labour \rightarrow Cheap labour availability, Ex: Rourkela \rightarrow Orissa; Bhilai \rightarrow Chattisgarh
- **4)** Availability of electricity \rightarrow hydro+ Availability of water \rightarrow Cooling; Ex: Bokaro \rightarrow Damodar
- **5)** Near ore mines \rightarrow Manganese, Limestone, Dolomite; Near coal fields, Electricity smelting
- **6)** Policy certainty \rightarrow Gov subsidy, rebate, establishment costs, tax rebates, land acquisition

#2 Why is there a changing spatial pattern & distribution of iron and steel industry?

- I) **Reasons** \rightarrow Changing pattern \rightarrow Consumption + Production + exchange of goods & services
- 2) Changing nature \rightarrow Chinese production \rightarrow 220% increase; Concentration \rightarrow production \rightarrow developing countries; Raw material concentration; Cross border \rightarrow Acquisition + Merger
- Within India → Deregulation, high priority industries → automatic approval; lowering of import duty → capital goods; Development of ports → Coastal location

#3 What are the issues with iron and steel industry in India?

- 1) Low steel import \rightarrow Indian industry hit; Domestic steel company \rightarrow losses; Cascading effect \rightarrow Bad loan to the Banking sector; Strategic core industry \rightarrow national security
- 2) Steps against Chinese Steel dumping → Anti-Dumping duty; Import tax → Boost domestic company; removal of quantitative restrictions on exports; Reduction → Rail + Power tariff; rationalize → coking coal classification
- Measures to boost demand → Infrastructure, construction, rural and agro based industries. Research and Development → setting → Institutes;
- 4) National Steel policy → steel production capacity → 300 MT by 2030; inter- sectoral growth; Self-sufficiency → Production; Channelizing → MSME; internationally competitive manufacturing capabilities; Domestic demand; Cost-efficient; Increase Per capita consumption → 160kg; Net steel exporter; Quality standards for Steel Production;
- 5) India's competitive advantage → steel production → indigenous availability of high-grade iron ore and non-coking coal; Contributor → manufacturing sector

#4 How is steel industry overcoming the problem of pollution?

- 1) Air-polluting emissions \rightarrow metal oxide + smoke + fume + dust + organic, inorganic gases
- 2) Obsolete technology \rightarrow inefficient system; Poor quality of ore, coke \rightarrow Impurity \rightarrow Leached
- 3) Covered under EPA, Need statutory clearance \rightarrow Regulatory oversight; NMEEE \rightarrow PAT
- 4) Iron & Steel Slag Utilization \rightarrow construction & road making, soil conditioning, rail ballast
- 5) Reduce carbon footprint → Coke Dry Quenching, Energy efficient technology, Secondary Fume Extraction System, Regenerative Burners → Re-heating Furnaces, Re-use scrap

Coal

#1 What geological process led to the formation of coal?

- 1) Most abundant fossil fuel \rightarrow 2/3rd of energy \rightarrow India \rightarrow 10% of global coal reserve
- 2) **Carbonation** \rightarrow Dead vegetation + fauna \rightarrow carbon rich coal \rightarrow High temperature + Pressure
- 3) Carboniferous period \rightarrow *peatification* and *coalification*; Bacterial action \rightarrow Peat;
- 4) Energy in coal \rightarrow Proportional \rightarrow % of carbon content = More depth = more pressure + heat
- 5) Three main types: lignite, bituminous, anthracite. Coal deposits \rightarrow India \rightarrow Gondwana
- 6) **Coalification** \rightarrow process \rightarrow Peat \rightarrow lignite \rightarrow sub-bituminous \rightarrow bituminous \rightarrow anthracite

2 What are the location factors responsible for setting up coal based industries?

- Gondwana coal → charcoal → labour + technology; Coal seams; Near to iron and thermal power plants; Bulky raw material + transportation;
- 2) Changing pattern due to access to \rightarrow Port+inland waterways; Stringent norms
- 3) Rat hole mining → primitive + hazardous; pit → 3-4 feet diameter; vertical shafts; Illegal → Banned by NGT; Environment fall outs → increase acidic content of water bodies →acid run off

#3 What is the status of coal sector in India?

- 1) Coal \rightarrow input \rightarrow Steel (in coke form) \rightarrow India only 15% coal reserve is coking coal;
- 2) Energy source \rightarrow cement industry \rightarrow later phased out \rightarrow fly ash use; 10% of IIP
- Challenges → High import dependence; Mining → clearing of forest → Delay in project approval; land acquisition; technology; monopolization of upstream sector CIL; Bottlenecks → Domestic transportation + logistic + hinterland connectivity; Coal block policy uncertainty → Captive/Non-Captive mining; Run of Mine project; Coal Mafia;
- 4) Gov Initiatives \rightarrow Mineral Laws (Amendment) Ordnance 2020 \rightarrow democratise the sector
- 5) 2015 Coal Mines (Special Provisions) Act; UTTAM → Transparency; SHAKTI scheme, Coal Mitra, Online Coal Clearance System, Coal Allocation Monitoring System, Commercial mining → revenue sharing mechanism

#4 How is the process of decarbonisation affecting coal sector in India?

- 1) Decarbonisation \rightarrow process of reducing the amount of carbon \rightarrow CO2 \rightarrow atmosphere
- Constraints → Location + ownership factors + type of user constraint → Spatial distribution of energy; Coal → East + Central; Solar → South + West; Energy divide; tax revenue;
- 3) Need → Coal → dirty fuel → Mercury + SO2 + Black Carbon → Acid rain; Health externality→ lung, heart disease; Price parity; Acid mine drainage → exposure to Sulfur
- 4) Dependence on Coal → Electricity access + raise agriculture productivity; Cheap power → development aspirations; reliable + scalable; Employment generation- Ex: Rust belt USA
- Policy pathways → job creation in low-carbon industries; robust low-carbon economic growth; peaking; Transition of workforce → coal mining to green jobs; energy access;

#5 Why is there a growing concern over shortage of coal recently?

- 1) Monsoon \rightarrow uneven distribution \rightarrow heavy rainfall \rightarrow mining + transportation; Post Pandemic recovery \rightarrow growth \rightarrow demand; lean coal inventories \rightarrow thermal power plants
- 2) Decline in renewable \rightarrow hydro + gas (increase in price) + nuclear (maintenance shutdown)
- 3) Increasing international coal price \rightarrow imports declined by power plants \rightarrow non power industries consumption increased.

Fertilizer Industry

#1 What are the factors that influence location of Fertilizer industry?

- 1) Presence of oil refinery \rightarrow nitrogenous fertilizers \rightarrow naphtha. Ex: Hazira fertilizer plant. Proximity to Natural gas \rightarrow Urea + Nitrogen \rightarrow input (Haber process); Efficient; Cleaner
- 2) Iron & steel industry \rightarrow steel slug + coke + lignite; Pipeline Infrastructure \rightarrow Transportation \rightarrow distributed production \rightarrow Sea based location \rightarrow Port facilities \rightarrow HBJ pipeline \rightarrow Bijapur
- 3) Availability of market + Raw material (mineral phosphate, raw potash material)

#2 What is the status of Fertilizer industry in India?

- 1) Core industry $\rightarrow 2^{nd}$ largest consumer of urea $\rightarrow 2$ type \rightarrow Primary + Secondary + Micro nutrient
- 2) Primary \rightarrow Nitrogenous (Urea), Phosphatic (di-ammonium phosphate –DAP), Potassic
- 3) Secondary \rightarrow Calcium, Magnesium, Sulfur; Micro nutrient \rightarrow Iron, Zinc, Boron, Chloride
- 4) High domestic consumption \rightarrow weak production (private sector);

#3 What are the issues with fertilizer industry in India?

- 1) Fertilizer subsidy \rightarrow Increasing, Political populism \rightarrow subsidy payment under delayed;
- 2) MRP \rightarrow urea \rightarrow statutorily fixed; MRP \rightarrow Phosphatic, Potassic Fertilizers market controlled
- 3) Disproportionate use of Urea → price control; Import Dependence → heterogeneous → raw material + feed stock regulated; Volatile International Prices → Controls on movement & distribution; demand-supply gap; Black marketing, routing to other destination
- National Urea policy → maximizing indigenous urea production; energy efficiency; rationalize subsidy; timely payment; Neem coating (delay release of Urea);
- 5) Streamline policy for P&K fertilizers \rightarrow balanced fertilizer use \rightarrow 'reasonable' MRP issue

#4 How is fertilizer industry overcoming the problem of pollution?

- Nitrogen pollution → Eutrophication → Increase BOD; Soil salinization; Green house gas emission; Fluoride pollution → Phospho gypsum → soil leaching → enters food chain
- 2) **Solutions** \rightarrow Market linking \rightarrow prices; Reform \rightarrow sluggish PSU \rightarrow revive growth; Loan write off
- Vibrant home-grown fertilizer industry; Frontier technologies; Greater accountability → Procurement, storage, distribution;
- 4) Bio fertilizer → Using microorganisms → enhance yield of crops → soil fertility + reduce surface runoff
 + pollution; Ex: → Rhizobium, Azotobacter, Blue green algae bio fertilizer
- **5)** Nano urea \rightarrow nano scale nitrogen particles \rightarrow increase surface area \rightarrow urea uptake efficiency increases;
- 6) Fertigation → fertilizers + irrigation water → Increases water use efficiency + rate of conversion into yield → Higher + pH of solution → balanced

Petroleum refineries

#1 What are the factors that influence location of Petroleum refineries?

- 1) 2 major \rightarrow a) Upstream/exploration/production/drilling; b) Downstream/Refining
- 2) Exploration → creating geological survey; land rights; production activities; onshore + offshore drilling; Geological survey → testing subsoil → onshore + seismic imaging → offshore; Proven reserves → extent a company predicts its production economically viable/recoverable oil and gas in place → time bound + Present level of technology
- 3) **Refining** \rightarrow Field based refinery \rightarrow transport + proximity \rightarrow Off shore sites \rightarrow export based facilities; Intermediate Locations \rightarrow Transported through pipelines; Market Locations \rightarrow densely populated areas; Coastal sites; Petrochemicals industry locations \rightarrow Finished product; Political stability \rightarrow Middle East;

#2 What are the different types of Petroleum crude?

- 1) 100 crude oils \rightarrow International trade \rightarrow 2 Benchmarks \rightarrow West Texas Intermediate, Brent
- 2) Brent crude → four different fields → North Sea; Light (low density) + sweet (low sulfur); refining → diesel fuel, transportation → easy → off shore → port connectivity; West Texas Intermediate → extracted from US + Supplies → landlocked + very light + very sweet + ideal for gasoline refineries; Shale gas → natural gas + sedimentary rocks → drilling + fracturing
- 3) Hydraulic Fracturing → High pressure liquid + Slick water fracturing+ extraction from coal bed+ Tight sand formations + shale formations; Bulk of US energy

#3 What are the issues with Petroleum refineries in India?

- 1) Shortage of Crude \rightarrow import dependency; demand \rightarrow lighter product; production deficiency
- 2) Dependency on foreign countries \rightarrow Geo-politics; less diversification in trading partners
- 3) Price \rightarrow International fluctuations \rightarrow inflationary + High import bill; Pollution tax
- 4) Shortage \rightarrow Refining Capacity \rightarrow expansion \rightarrow new refineries + setting up new joint ventures
- 5) Exploration \rightarrow new reserves \rightarrow Firm valuations small \rightarrow absence of Global giant+ presence
- 6) Technology issues \rightarrow production \rightarrow middle distillates, fire fighting systems \rightarrow R&D is less
- 7) Market-Determined Pricing System \rightarrow Common good \rightarrow regulated + PSU presence

#4 What are the future Prospects of India's Petroleum product refineries?

- 1) Investing in capacity \rightarrow Dual \rightarrow acid gas + sulfuric acid regeneration; Upward + downward linkage \rightarrow Merging of HPCL + ONGC;
- 2) Hydrocarbon exploration Licensing policy → (a) production sharing regime → revenue sharing regime; (b) Open Acreage Licensing Programme → transparency + stream lining procedure; (c) reduced royalty rates, marketing and pricing freedom, round the year bidding; (d) single license → conventional + unconventional hydrocarbon
- 3) Strategic petroleum reserve → Stockpile → meet contingencies → shock of crude oil → Places → Visakhapatnam, Mangalore, Padur, Chandikhole, Bikaner; Need → reduce import dependency, overcoming volatility in prices; Energy security; Strategic Cooperation (UAE)

Industrial corridors

#1 What are industrial corridors?

- 1) Economic ecosystem \rightarrow Transportation corridor(nerve) \rightarrow 2 major economic center
- 2) Competitiveness in manufacturing \rightarrow world class infrastructure + reduced logistics cost
- 3) National Industrial Corridor programme \rightarrow industrial cities + townships + investment
- 4) Multi modal connectivity (inland waterway, Freight corridor) + "Plug & Play" infrastructure
- 5) Building resilient + sustainable future; SDG 11; Convergence with Smart City Mission

#2 What are the different locations of industrial corridors?

- II corridors → Hub and spoke model → Cities act as engine of growth → Employment + Socioeconomic development Major Corridors → Delhi-Mumbai; Chennai-Bengaluru (JICA); Bengaluru-Mumbai (UK); Hyderabad-Bengaluru; Amritsar-Kolkata; East Coast Corridor etc.
- 2) **DMIC** \rightarrow Japan-India coordination \rightarrow High Speed High Capacity" connectivity;
- 3) Amritsar-Kolkata Industrial Corridor (AKIC) \rightarrow backbone \rightarrow Eastern dedicated freight corridor
- Special Purpose Vehicle setup; National Industrial Corridor Development & Implementation Trust (NICDIT)→ unified development + coordinating body
- 5) Defence Industrial Corridors → 2 DIC → (a) UP (6 nodes → Aligarh, Agra, Chitrakoot, Jhansi, Kanpur, Lucknow); (b) Tamil Nadu (5 nodes-> Chennai, Coimbatore, Hosur, Salem, Tiruchirappalli) → defence manufacturing ecosystem + investment; indigenous production national security; self reliance; reduce import bill; MSME → direct,indirect employment

#3 What is the significance of industrial corridors in India?

- 1) Economic benefits \rightarrow Logistics infrastructure, freight handling, feeder connectivity + industrialization+ urbanization; economies of scale; Reverse distress migration; hinterland development; cluster model \rightarrow hub and spoke model; demographic dividend
- 2) **Socioeconomic benefits** → raise per capita incomes → better social indicators → Technical educational/skill training institutes; Increasing labor productivity
- 3) Manufacturing \rightarrow competitiveness increase; Linking major cities \rightarrow Federalism strengthened

#4 What are the Challenges to setting up industrial corridors?

- Land acquisition → Legal hurdles + compensation issue + eviction of locals; Environment clearances + Eco
 – sensitive areas → Sustainability Versus Economic growth debate
- 2) Investment friendly policies; Friendly taxation system \rightarrow clearly defined tax liabilities;
- 3) Agriculture land diverting \rightarrow Land stress, food security \rightarrow protest by farmers
- 4) Complexity \rightarrow Inter ministerial + Intra regional + inter state \rightarrow administrative issues
- 5) Relative comparative advantage of industries -> Integration with global value chain.
- 6) Existing forward and backward linkages + Skill availability; Power and water availability
- 7) Nurturing corridor \rightarrow MSME supplier ecosystem \rightarrow decentralized + equitable development
- 8) Labor reforms \rightarrow progressive \rightarrow balance wages + quality of work + institutional reform

Dedicated Freight Corridors

#1 What are Dedicated Freight Corridors?

- 1) High speed + high-capacity railway corridor \rightarrow Transportation of freights \rightarrow safe + efficient
- 2) Project → Ministry of Railways; 6 freight corridors → Western DFC, Eastern DFC, North-South, East-West (Bengal-Maharashtra), East-South (Bengal-Andhra Pradesh), South-South
- 3) Implementing Body \rightarrow Dedicated Freight Corridor Corporation of India (DFCCIL)- 2006
- 4) Western Dedicated Freight Corridor (WDFC) → Dadri Jawaharlal Nehru Port (1468km); JICA funded; 4 states → Haryana, Rajasthan, Gujarat, Maharashtra, Uttar Pradesh
- 5) Eastern Dedicated Freight Corridor (EDFC) → Ludhiana → Dankuni (west Bengal) 1760 km Route → Punjab, Haryana, Uttar Pradesh, Bihar, Jharkhand & West Bengal; Coal mines + Thermal power plant + industrial cities + Feeder route; World Bank funded;

#2 What was the need for setting up Dedicated Freight Corridors?

- 1) **Congestion** \rightarrow increasing freight volume; increase in infrastructure, increased axle load, reduction \rightarrow turn-round time, reduced unit cost of transportation, rationalization of tariffs
- 2) Saturated Golden Quadrilateral Freight Corridor \rightarrow 55% revenue earning freight
- 3) Single tracks \rightarrow Passenger + freight trains \rightarrow Failing share of goods traffic (only 36%)
- 4) Under investment of Railways \rightarrow Attract private investment + Ease of doing business

#3 What are the advantages of Dedicated Freight Corridors?

- 1) Better freight operation + handling + movement (speed); Complement port led development
- 2) Revenue for railways \rightarrow Market share + non fare revenue \rightarrow up gradation of technology
- 3) Inflationary diesel fuel \rightarrow indigenous electric power \rightarrow Current account deficit improve
- 4) Technology transfer + operational expertise + Skill + capacity. Ex: Delhi metro
- 5) Facilitate industrial activity + multi-modal value-addition services hubs + Industrial corridor
- 6) Double stack technology \rightarrow Passenger trains \rightarrow reduced ticket prices + increased access
- 7) Reduced emissions + green house gases \rightarrow reduced pollution + earn carbon credits

#4 What are the Challenges to setting up Dedicated Freight Corridors?

- 1) Private freight terminals + Logistics parks \rightarrow hurdles in implementation \rightarrow Risk + uncertainty
- 2) Road (rural areas) \rightarrow doesn't suit NHAI standards \rightarrow heavy vehicular traffic
- 3) High land cost + inflexible contractual terms \rightarrow PPP risk sharing+ objective contractual
- 4) Railways \rightarrow Part of supply chain not a stand alone competitor
- 5) Delay \rightarrow almost a decade old \rightarrow Land acquisition (titling) \rightarrow loan approval (mounting NPA)
- 6) Passing through multiple states \rightarrow file movement \rightarrow administrative delays \rightarrow sub federalism

Inland Waterways

#I What are inland waterways?

- I) Network of river, canals, back waters, creeks \rightarrow Transportation + hinterland connectivity
- 2) 14500 km navigable waterway \rightarrow 111 projects \rightarrow National Waterways Act 2016 Inland water way authority of India \rightarrow Statutory \rightarrow build infrastructure + surveying + regulation

#2 What was the need for promoting inland waterways?

- I) Low cost + Low capital + operational ease + maintenance + Low energy consumption;
- 2) Fuel efficiency + Fewer emission + Meet INDC targets \rightarrow Process towards decarbonization.
- 3) Increase capacity (goods + passenger) + Under utilization of navigable waterway
- 4) Growth \rightarrow Industrial growth + tourism; reduce logistic cost; reduce congestion of roads
- 5) Fewer accidents \rightarrow safer + reliable medium; Accessibility \rightarrow between remote areas
- 6) Private investment \rightarrow inland vessel fleet \rightarrow Market forces + bigger & better vessels

#3 Where are the different inland waterways located?

- 1) Criteria \rightarrow capability of navigation, continuous, interest of more than one state, safety etc.
- 2) 13 waterway developmental activity underway → NW I → Ganga-Bhagirathi-Hooghly River system → 4 states → Uttar Pradesh, Bihar, Jharkhand, West Bengal; (b) NW 2 → Sadiya Dhubri (Brahmaputra); (c) NW 3 → Kollam-Kottapuram stretch (West Coast Canal)
- NW 1, 2 → alluvial rivers → braiding, meandering, water level fluctuation etc. Pre requisite → Fairway → depth + width; navigational aids; multi modal terminals (road + rail)
- 4) NW 3 \rightarrow tidal canal \rightarrow predictable + uniform tidal variation; nominal maintenance

#4 What are the impacts of inland waterways on economy?

- I) One time capital investment (Brownfield); No land acquisition \rightarrow Time + cost overrun avoid
- 2) Employment generation \rightarrow Supporting projects \rightarrow Canals + Inter linking of river + JMVP
- 3) Jal Marg vikas project → Multi modal + Inter modal terminals + Roll on roll off ferry service + navigation lock (Farakka) + depth dredging, integrated vessel repair + River information system; Varanasi Haldia stretch; World bank funded; PPP model
- 4) Reduce import bill \rightarrow Fuel consumption reduce \rightarrow Transportation of bulk goods
- 5) North East connectivity \rightarrow Growth inclusive; New markets \rightarrow Boost rural demand

#5 What are the issues in implementing inland waterways?

- 1) River diversion \rightarrow irrigation, industrial needs; reduced depth + shoal formation;
- Excessive silt loads → erosion of uplands → bad catchment management + deforestation → LADIS Least Available Depth Information System) → real time data + transportation
- 3) River conservancy measures inadequate → gradual deterioration + inter state/intra country river dispute; Inadequate vertical + horizontal clearances → plying vessels → economic size → traditional waterway routes
- 4) Adequate terminal size lacking; Ecological sensitivity of rivers \rightarrow Ex: Gangetic dolphins
- 5) Displacement of fishing community, people dependent on riverbed cultivation

Cropping pattern

#1 What are the features of Indian cropping pattern?

- I) Proportion of area \rightarrow crops \rightarrow given time \rightarrow unit area; Temporal + spatial arrangement
- 2) India \rightarrow tradition bound + Food crop oriented (rice, wheat \rightarrow base crop) + regional variation
- 3) Subsistence level \rightarrow Number of crops grown; Cash crops \rightarrow Negligible; Rain fed nature
- 4) Small size \rightarrow Land holding; Over dependency \rightarrow Food security; Pressure \rightarrow Land resource
- 5) **Cropping System** = Cropping Pattern + Management; Efficient utilization of resources + Stability, Higher net agricultural return

#2 What are the factors affecting cropping patterns?

- I) Geographical Factor \rightarrow physical environment + fertility + climate + temperature + moisture
- 2) Socio Cultural Factors- Food Habits, Customs, Traditions, local preferences etc.
- 3) Infrastructure Factors \rightarrow Irrigation, Storage, Transport, Extension Services etc.
- 4) **Economic** Factors Land Ownership, Land Tenancy, Land tenure, Size of Land Holding Labor Intensive and capital-intensive agricultural crops, information system + marketing
- 5) **Technological** factor \rightarrow Mapping, drones, availability of genetic seeds
- 6) **Government** policy \rightarrow Non-distortion, price support mechanism, rural credit availability

#3 What are the significance of cropping systems?

- I) Enhancing soil fertility \rightarrow Nitrogen fixation; perennial forages + millet \rightarrow soil organic content
- 2) Inhibit pest, disease \rightarrow biological predator; reduce homogeneity, against dispersal of pest
- 3) Resource efficiency \rightarrow Integrated farming system \rightarrow ecological sustainable
- 4) Reduce risk of crop failure \rightarrow differential response \rightarrow climate \rightarrow income security to farmer
- 5) Food security \rightarrow fork to farm; nutritional deficiency overcome; crop diversification

#4 What is the changing nature of cropping pattern in India?

- 1) **Pre-Green Revolution Phase** \rightarrow 3/4th, \rightarrow under food crops \rightarrow sugarcane dominated
- Green Revolution Phase → MSP announced → assured market + income; wheat-rice predominance; self-sufficiency; intensive + commercial agriculture production system
- 3) Economic Reform Phase → rise of Agricultural export + corporate, contract farming + mechanization + diversification → non-food crop prominence; Prime moving force

#5 What steps have been taken to correct the imbalances in cropping pattern?

- I) Reasons \rightarrow food grains \rightarrow remunerative + productive; MSP \rightarrow rice, wheat high sans millet
- 2) Change in consumption pattern \rightarrow cereals \rightarrow rice + wheat; food processing + middle class
- 3) Change from demand driven production pattern \rightarrow reduce input cost; storage is poor
- 4) Gov Measures \rightarrow National food security mission \rightarrow increasing production \rightarrow pulses
- 5) Increasing push towards oil seeds + oil palms; millet; fortification of crops; horticulture
- 6) Rationalization of MSP; Soil health card scheme \rightarrow improve soil fertility + organic farming

Population part 1 of 2

#1 What is population growth?

- I) Change \rightarrow number of inhabitants + specified territory + specified time; Might be +ve/-ve
- 2) Natural growth \rightarrow Births Deaths; Actual growth = Natural Growth + Net Migration
- 3) Density \rightarrow number of people/size of the land \rightarrow Persons/sq km

#2 What are the factors that influence population distribution?

- Geographical factors → Availability of fresh water, Land forms (gentle slopes, plains), Climate (harsh climates → sparsely populated), Soils (agriculture soils)
- 2) Economic Factors → Minerals(mining), Urbanization (Migration), Social + Cultural factors, Industrialization, Ease of living, economic opportunities

#3 What are the different types of migration in India?

- I) Internal migration \rightarrow Inter + Intra regional; Long term + Short term; Construction;
- 2) Rural-Urban Migration → Economic reasons → Second five year plan → industries set up, Large growth → IT industry; increased by LPG based reforms
- 3) Seasonal migration \rightarrow rural landless, agriculture, religious reasons \rightarrow urban areas \rightarrow Footloose industries; under employment; Tourism industry \rightarrow Hilly areas in summer
- 4) Rural-Rural migration→ social reasons → marriage, communal tensions, evictions, resettlement; Urban-Rural → reverse migration/counter current → largely old population

#4 What are the challenges of migration in India?

- I) Urbanization \rightarrow demographic explosion + poverty-induced \rightarrow rural-urban migration
- 2) Inter state migration ~ 9 million annually; Climate change \rightarrow Disaster induced migration
- 3) Distress migration \rightarrow rural-agrarian crisis; pandemic induced \rightarrow lock down; Vulnerability increases due to \rightarrow lack negotiating power + lack social + political clout
- 4) Ghettos and urban slums; social impact \rightarrow crime rate increase; poor social indicators
- Environment degradation → urban ecology → urban heat island, eutrophication of urban water bodies, air pollution, land + water stress. Ex: Bengaluru

#5 How can the problem of increasing migration be resolved?

- 1) Structural gaps \rightarrow circular migration \rightarrow Opportunities in rural areas \rightarrow Shift from primary to tertiary sectors; social security + formalization of economy \rightarrow estimation of number
- 2) Development of satellite towns \rightarrow alternate industry; absorb the excess migrant
- 3) Rural urbanization \rightarrow RURBAN mission; MPLAD, Sansad Adarsh Gram Yojana, PURA
- 4) Developing \rightarrow functional towns + functional specialization; reduce load on urban centres
- 5) Smart city mission \rightarrow Affordable housing programs (PM AWAS yojana); Law enforcement needs to be sensitized \rightarrow Looked with suspicion
- 6) Peace, stability, regional development, digital literacy → ASPIRE scheme, DISHA, CSC scheme, MGNREGA → Better remuneration and timely payments

Population part 2 of 2

#1 What is demographic transition?

- 1) Population of region \rightarrow High birth/high death \rightarrow low birth/low death \rightarrow rural agrarian \rightarrow urban industrial \rightarrow cycle \rightarrow demographic cycle
- 2) first stage \rightarrow high fertility + high mortality; Growth \rightarrow slow; Second stage \rightarrow fertility \rightarrow mortality; Third stage \rightarrow decline in mortality (net addition); Last stage \rightarrow fertility + mortality stabilizes; population either stable \rightarrow grows slowly

#2 What is demographic dividend?

- 1) India \rightarrow 62.5% \rightarrow 15-59 years; Peak around 2041; share of working age population \rightarrow 59%
- Economic growth potential → shifts in a population's age structure → share of working-age population > non-working-age share
- 3) First \rightarrow Working age population increases + % of dependents (young + old) decrease
- 4) Second \rightarrow increase in adult longevity \rightarrow savings increase \rightarrow economic growth + investment

#3 Why India should focus on demographic dividend?

- 1) Economic growth \rightarrow increasing economic activity \rightarrow domestic demand \rightarrow higher working population \rightarrow per capita GDP increase \rightarrow consumption increase
- 2) Human capital \rightarrow Potential workforce \rightarrow advanced economy + self reliant India
- 3) Increased labor supply \rightarrow Productivity + skill; Capital formation \rightarrow Increase stock of capital
- 4) Accelerate shift \rightarrow knowledge economy + disruption \rightarrow innovation economy \rightarrow unicorns
- 5) Creation \rightarrow social goods \rightarrow health + education \rightarrow resource divert \rightarrow infrastructure
- 6) NFHS 5 → TFR → Replacement rate (2.1) → 19 states; Demographic shift → 1020women /1000 men; Sex ratio at birth → 929; More than 50% → anaemic child + women; Significance → Urban (1.6)-Rural divide (2.1) in TFR; North (younger + male)-South divide; Challenges → Women → translate → economic freedom + autonomy; literacy rate; overcoming divide

#4 What are the challenges of demographic dividend?

- I) Enhancing skill \rightarrow human capital \rightarrow unproductive + under employed
- 2) Low human development \rightarrow Nutritional deficiency+ Life expectancy + stunting + wasting
- 3) Informal economy \rightarrow low wages + little social security \rightarrow seasonal employment
- 4) Jobless growth \rightarrow deindustrialization, de-globalization, 4th industrial revolution, technology
- 5) Asymmetric demography \rightarrow Concentrated poor state \rightarrow Southern states \rightarrow replacement rate
- 6) Skewed gender ratio \rightarrow Declining female labor force participation \rightarrow 27%
- 7) **Demographic disaster** → Digital technology substituting current jobs + lack of skills → increase old population → economic insecurity → state burden → social security

#5 What can India do maximize the outcomes from it's demographic dividend?

- 1) Addressing social evil \rightarrow child marriage, access \rightarrow quality sexual + reproductive health services + family planning services + contraceptives \rightarrow reducing fertility
- 2) Building human capital \rightarrow Investing \rightarrow healthcare + education + job + skill \rightarrow NSDC + PM kaushal vikas yojana + digital literacy; inclusive society \rightarrow fighting erosion of opportunity

- 3) Nutritional security \rightarrow RMNCH + A \rightarrow ICDS scheme \rightarrow Start up + Stand up India scheme
- 4) Urbanisation \rightarrow Planned + safe sustainable cities; Smart City Mission, AMRUT mission
- 5) Job creation \rightarrow formal + white collared \rightarrow EODB \rightarrow Business interest + entrepreneurship

Pulses and Millet Cultivation

#I What is the status of production of pulses and millet in India?

- I) Pulses \rightarrow High quality protein + complement cereal protein; Low cost \rightarrow Dietary habit suited
- 2) Leguminous crops → restoring → soil fertility; Source of Protein; Less moisture → dry conditions; Major states → Madhya pradesh, Uttar Pradesh, Rajasthan, Maharashtra, Gram → 40% share; Tur/Arhar → 20%; Cultivated → Marginal + sub marginal land
- 2023 → International year of Millet. Common millet grown → Jowar(sorghum), Bajra, Ragi etc. Millet → 60% less coverage area; Important source → Nutritional security

#2 Why is the government pushing towards increasing pulses and millet production?

- 1) Famine reserves \rightarrow non-acid forming, non-glutinous, highly nutritious, easily digestible, low glycaemic index (GI) \rightarrow slow release of glucose; good amount of dietary fiber
- 2) 'Miracle grains' + 'crops of the future \rightarrow Wider adaptability \rightarrow coastal \rightarrow dry areas \rightarrow withstand \rightarrow moisture + temperature variability + drought resistant
- 3) Dual purpose \rightarrow Food + Fodder \rightarrow livelihood + livestock; low use of chemical fertilizers
- 4) Curbing the life style disease \rightarrow important to fight changing disease burden of India
- 5) Environmentally sustainable agriculture \rightarrow reduce atmospheric carbon pressure

#3 What are the issues with production of pulses and millets?

- 1) Climate resilient staple food crops \rightarrow dry land agriculture; Rain fed area \rightarrow most cultivated
- 2) Supply demand mismatch; Decreasing production; low demand due to look + taste
- 3) Short-shelf life \rightarrow storage \rightarrow primary processed product; Lack of awareness \rightarrow health benefit
- 4) Higher incidence of pest + fungal infection \rightarrow rainy season; Absence of production support
- 5) Competition \rightarrow market friendly remunerative crop + preference pattern in consumption
- 6) Huge import bill; Policy bias towards \rightarrow Rice + wheat; Low yield \rightarrow seeding + milling loss

#4 What are the steps that have been taken to increase pulse and millet production?

- 1) Inclusion in (Targeted) Public Distribution System \rightarrow sub-mission 'Nutri-cereals' \rightarrow high nutritive value + anti-diabetic properties
- 2) Nutritional Security through Intensive Millet Promotion \rightarrow under RKVY \rightarrow integrate improved production + post harvest technology; NFSM \rightarrow enhance production
- 3) Pricing support \rightarrow MSP + price realization + procurement + inclusion under NFSM, PDS
- 4) Short duration \rightarrow Pest resistant crop; Seed multiplication \rightarrow increase per capita availability
- 5) Area expansion \rightarrow change cropping system \rightarrow cereal-based cropping, inter-cropping
- 6) Buffer stock → overcome seasonal variability → Food + nutritional security → Protein; Low carbon + water footprint → sustainable farming system + dietary diversification
- 7) Small holder centric crop \rightarrow Efficient market system \rightarrow FPO+ electronic National Agriculture Market \rightarrow value chain integration

Horticulture Crops

#1 What are the various components of Horticulture?

- I) Agriculture \rightarrow related \rightarrow fruits, vegetables, flowers, ornamental plants, spices, cashew, cocoa
- 2) Capital + labor intensive \rightarrow India's share \rightarrow fruit \rightarrow 10%; vegetable \rightarrow 14%; 2nd largest producer
- 3) Fruits \rightarrow Banana top produced fruit (Tamil Nadu); Mango \rightarrow Largest area cultivated (U.P)
- 4) **Vegetables** \rightarrow highest share cultivation \rightarrow Potato; Uttar Pradesh \rightarrow highest in production
- 5) Flowers → Increase well being + affluence; diverse agro-climatic condition; Floriculture → increasing area → loose + cut flowers; Tamil Nadu→ highest share of production

#2 What is the status of horticulture sector in India?

- 1) Contributes \rightarrow 30.4% \rightarrow India's agriculture GDP; Improving income \rightarrow rural sector \rightarrow employment; Doubling farmers income; smaller scale of cultivation
- 2) Food security + Hidden hunger \rightarrow reduce; Nutrition \rightarrow POSHAN abhiyan; roughage+ fibre
- 3) Increased production \rightarrow export; Value addition \rightarrow Food processing industry \rightarrow raw material
- 4) Horticulture growth \rightarrow agriculture; Low per capita consumption \rightarrow low (46gms, 130gm)
- 5) Cultivable wasteland \rightarrow Horticulture crop \rightarrow without diverting agricultural land

#3 What are the challenges to horticulture sector in India?

- 1) Price realization \rightarrow dumping of farm produce \rightarrow distress sale \rightarrow dip in production cycle
- 2) Market inefficiencies \rightarrow short shelf life + poor storage capacity; poor government policies
- 3) High input cost + initial capital high \rightarrow Small+ marginal farmer \rightarrow lack resources
- 4) Volatility \rightarrow price fluctuations; Export oriented \rightarrow WTO norms \rightarrow phyto sanitary measures
- 5) Limited availability \rightarrow market intelligence + hedging risk \rightarrow future trading
- 6) Climate change variability \rightarrow Ex: loss of apple production \rightarrow hailstorm, landslide

#4 What are the steps that have been taken to increase horticulture production?

- MIDH → Mission for Integrated Development of Horticulture → Integrate → Horticulture+ Bamboo+ Coconut → (a) Holistic development; area based regionally differentiated strategy; (b) Encourage aggregation of farmers → FPO, SFAC, Co-operatives; (c) Improve productivity → germplasm, water use efficiency → Micro Irrigation; (d) skill development + employment generation → post harvest management + value addition + cold storage
- 2) Remote sensing + Geographic Information System \rightarrow planning + monitoring; Ex: Bhuvan
- 3) Technology driven program \rightarrow High Density Plantation+ Bee-keeping for crop pollination
- 4) National Horticulture Mission → Rejuvenation, replacement senile plantations → canopy management → low productivity farms; Integrated Pest Management; Post harvest management + processing; Cluster based development
- 5) Construction of green houses, shade net house, plastic mulching, plastic tunnels, anti bird/hail nets \rightarrow construction cost to be minimal
- 6) TOPS/Operation Greens \rightarrow enlarged \rightarrow 22 perishable products \rightarrow Subsidy on transportation + storage \rightarrow TOP \rightarrow TOTAL \rightarrow increase market availability \rightarrow avoid distress sale
- 7) National Bamboo Mission→ Yield + new variety + coverage area for bamboo; Promotion of marketing → handicrafts; Develop technology → scientific + traditional; Employment

JK Chrome | Employment Portal

Rated No.1 Job Application of India

Sarkari Naukri Private Jobs Employment News Study Material Notifications

JK Chrome

www.jkchrome.com | Email : contact@jkchrome.com