JK Chrome

JK Chrome | Employment Portal

Rated No. 1 Job Application of India

Sarkari Naukri
Private Jobs
Employment News
Study Material
Notifications

NOTIFICATIONS

JK Chrome

jk chrome
Contains ads

Install

About this app
JK Chrome updates it's users with latest news \& job updates from J\&K.

News \& Magazines

Rate this app
Tell others what you think

GET IT ON
Google play
JK Chrome

Soil Mechanics \& Foundation Engineering

Properties of Soils \& Classification and Structure of Soil

Properties of Soils

Phase Diagram

- Soil mass is in general a three-phase system composed of solid, liquid and gaseous matter in a blended form with each other.

But in phase diagram - for understanding, these three matters are shown separately.

- In supersaturated, state with change in water content volume of voids changes hence volume of soil changes.

The diagrammatic representation of the different phases in a soil mass is called the "phase diagram".

Water content

$w=\frac{W_{W}}{W_{S}} \times 100$
where, $W_{w}=$ Weight of power
$W_{S}=$ Weight of solids
There can be no upper limit to water content, i.e. $\mathrm{w} \geq 0$

Void ratio

$e=\frac{V_{v}}{V_{s}}$
where, $\mathrm{V}_{\mathrm{v}}=$ Volume of voids
$\mathrm{V}=$ Total volume of soil
Porosity cannot exceed 100% i.e.,
$0<\mathrm{n}<100$
Void ratio is more important engineering property.

Degree of Saturation

$S=\frac{V_{w}}{V_{v}} \times 100$
where, $\mathrm{V}_{\mathrm{w}}=$ Volume of water
$V_{v}=$ Volume of voids
$0 \leq S \leq 100$
for perfectly dry soil : S = 0
for Fully saturated soil : $S=100 \%$

Air Content
$a_{c}=\frac{V_{a}}{V_{v}}=1-s \quad V_{\mathrm{a}}=$ Volume of air
$S_{r}+a_{c}=1$

\% Air Void

$\% n_{a}=\frac{\text { Volume of air }}{\text { Total volume }} \times 100=\frac{V_{a}}{V} \times 100$
$\mathrm{n}_{\mathrm{a}}=\mathrm{n} . \mathrm{a}_{\mathrm{c}}$

Unit Weight

A. Bulk unit weight

$$
\gamma=\frac{W}{V}=\frac{W_{s}+W_{w}}{V_{s}+V_{w}+V_{a}}
$$

Thus Bulk unit weight is total weight per unit volume.

B. Dry Unit Weight is the weight of soil solids per unit volume.
$\gamma_{d}=\frac{W_{s}}{V}$

- Dry unit weight is used as a measure of denseness of soil. More dry unit weight means more compacted soil.
C. Saturated unit weight: It is the ratio of total weight of fully saturated soil sample to its total volume.
$\gamma_{s a t}=\frac{W_{s a t}}{V}$
Submerged unit weight or Buoyant unit weight (γ): It is the submerged weight of soil solids per unit volume.
$\gamma^{\prime}=\gamma_{s a t}-\gamma_{w}$
$\gamma_{\text {sat }}=$ unit wt. of saturated soil
$\mathrm{Y}=\mathrm{unit} \mathrm{wt}$. of water
Unit wt. of solids:
$\gamma_{s}=\frac{W_{s}}{V_{s}}$
γ is roughly $1 / 2$ of saturated unit weight.

Specific Gravity

True/Absolute Special Gravity, G

- Specific gravity of soil solids (G) is the ratio of the weight of a given volume of solids to the weight of an equivalent volume of water at $4^{\circ} \mathrm{C}$.

$$
G=\frac{W_{s}}{V_{s} \cdot \gamma_{w}}=\frac{\gamma_{s}}{\gamma_{w}}
$$

$\mathrm{G}=2.6$ to 2.75 for inorganic solids

$=1.2$ to 1.4 for organic solids

- Apparent or mass specific gravity $\left(\mathbf{G}_{\mathrm{m}}\right)$: Mass specific gravity is the specific gravity of the soil mass and is defined as the ratio of the total weight of a given mass of soil to the weight of an equivalent volume of water.
$G_{m}=\frac{W}{V \cdot \gamma_{w}}=\frac{\gamma \text { or } \gamma_{d} \text { or } \gamma_{\text {sat }}}{\gamma_{w}}$
where, γ is bulk unit $w t$. of soil
$\gamma=\gamma_{\text {sat }}$ for saturated soil mass
$y=\gamma_{d}$ for dry soil mass
$\mathrm{G}_{\mathrm{m}}<\mathrm{G}$
In India, G is reported at $27^{\circ} \mathrm{C}$,
$G_{T^{\circ} \mathrm{C}}=G_{27^{\circ} \mathrm{C}}\left(\frac{\gamma_{w} \text { at } 27^{\circ} \mathrm{C}}{\gamma_{w} \text { at } \mathrm{T}^{\circ} \mathrm{C}}\right)$

Relative density (I_{D})

To compare the degree of denseness of two soils.
$I_{D} \infty$ Shear strength $\alpha \frac{1}{\text { Compressibility }}$
$\% I_{D}=\frac{e_{\max }-e}{e_{\max }-e_{\min }} \times 100$
$\% I_{D}=\frac{\frac{1}{\gamma_{d \min }}-\frac{1}{\gamma_{d}}}{\frac{1}{\gamma_{d \min }}-\frac{1}{\gamma_{d \max }}} \times 100$

$\% I_{D}$	Description
$0-15$	Very loose soil
$15-30$	Loose soil
$30-65$	Medium soil
$65-85$	Dense soil
$85-100$	Very dence soil

A. when particles are arranged in cubical array
$e_{\max }=91 \%, n_{\max }=47.6 \%$
B. When particles are arranged in prismoidal array (Rhomohedral Array)

$$
\mathrm{e}_{\min }=35 \%, \mathrm{n}_{\min }=25.9 \%
$$

Relative Compaction

Indicate: Degree of denseness of cohesive + cohesionless soil

$$
R_{c}=\frac{\gamma_{D}}{\gamma_{D_{\operatorname{six}}}}
$$

Relative Density

Indicate: Degree of denseness of natural cohesionless soil

Some Important Relationships

(i) Relation between γ_{d}, γ
$\gamma_{d}=\frac{\gamma}{1+w}, \quad V_{s}=\frac{V}{1+e} \quad \& \quad W_{s}=\frac{W}{1+w}$
(ii) Relation between e and n
$n=\frac{e}{1+e}$ or $\quad e=\frac{n}{1-n}$
(iii) Relation between e, w, G and S:
$\mathrm{Se}=\mathrm{w} . \mathrm{G}$
(iv) Bulk unit weight (γ) in terms of G, e, w and $\gamma_{w} \gamma, G, e, S_{r}, \gamma_{w}$
$\gamma=\frac{\left(G+e S_{r}\right) \gamma_{w}}{1+e}$
$\gamma=\frac{G \gamma_{w}(1+w)}{(1+e)}$
$\{\mathrm{Se}=\mathrm{w} . \mathrm{G}\}$
(v) Saturated unit $(\gamma s a t$.$) weight in terms of G$, e \& γ_{w}
$\mathbf{S}_{\mathrm{r}=1} \gamma_{s a t}=\left[\frac{G+e}{1+e}\right] \cdot \gamma_{w}$
(vi) Dry unit weight γ_{d} in terms of G, e and γ_{w}
$S_{r}=0$
$\gamma_{d}=\frac{G \gamma_{w}}{1+e}=\frac{G \gamma_{w}}{1+\frac{w G}{S}}=\frac{\left(1-\eta_{a}\right) G \gamma_{w}}{1+w G}$
(vii) Submerged unit weight $\left(\gamma^{\prime}\right)$ in terms of G, e and γ_{w}
$\gamma=\gamma_{\operatorname{sat}}-\gamma_{w}=\gamma^{\prime}=\left(\frac{G-1}{1+e}\right) \cdot \gamma_{w}$
(ix) Relation between degree of saturation (s) w and G

$$
S=\frac{W}{\frac{\gamma_{w}}{\gamma}(1+W)-\frac{1}{G}}
$$

Methods for determination of water content

(i) Oven Drying Method

- Simplest and most accurate method
- Soil sample is dried in a controlled temperature $\left(105-110^{\circ} \mathrm{C}\right)$
- For organic soils, temperature is about $60^{\circ} \mathrm{C}$. Soil having gyprum, temperature $\nsucc 80^{\circ} \mathrm{C}$
- Sample is dried for 24 hrs .
- For sandy soils, complete drying can be achieved in 4 to 6 hrs.
- Water content is calculated as:
$w=\frac{W_{2}-W_{3}}{W_{3}-W_{1}} \times 100 \%$
where, $\mathrm{W}_{1}=$ weight of container
$\mathrm{W}_{2}=$ weight of container + moist sample
$W_{3}=$ weight of container + dried sample
Weight of water $=W_{2}-W_{3}$
Weight of solids $=W_{3}-W_{1}$
(ii) Pycnometer Method
- quick method
capacity of pycnometer $=900 \mathrm{~m} /$.
this method is more suitable for cohesionless soils.
- used when specific gravity of soil solids is known
- Let $\mathrm{W}_{1}=\mathrm{Wt}$. of empty dried pycnometer bottle
$\mathrm{W}_{2}=\mathrm{Wt}$. of pycnometer + Soil
$\mathrm{W}_{3}=\mathrm{Wt}$. of pycnometer + Soil + Water
$W_{4}=W t$. of pycnometer + Water.

$$
\mathrm{w}=\left[\frac{\left(\mathrm{W}_{2}-W_{1}\right)}{\left(\mathrm{W}_{3}-W_{4}\right)} \cdot\left(\frac{\mathrm{G}-1}{\mathrm{G}}\right)-1\right] \times 100 \%
$$

$\left(W_{1}, W_{2}, W_{3}\right.$ and W_{4}
are in anticlockwise order)
(iii) Calcium Carbide Method/Rapid moisture Meter Method Field Method

- Quick method (requires 5 to 7 minutes); but may not give accurate results.
- The reaction involved is

$$
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \uparrow+\mathrm{Ca}(\mathrm{OH})_{2}
$$

- Soil sample weights $4-6 \mathrm{gms}$.
- The gauge reads water content with respect to total mass of soil. i.e., \backslash

$$
=\frac{W_{w}}{\left(W_{s}\right)_{w e t}}
$$

(In this equipment pressure calibrated against water content with respect to total mass)

- Actual water content $w=\frac{w_{r}}{1-w_{r}} \times 100 \%$

w_{r} is moisture content recorded, expressed as fraction of moist wt. of solid.
w is actual water content.
(iv) Sand Bath Method (Field Method)
- quick, field method
- used when electric oven is not available.
- soil sample is put in a container \& dried by placing it in a sand bath, which is heated on the kerosene store.
- water content is determined by using same formula as in oven drying method.

(v) Torsion Balance Moisture Meter Method

- quick method for use in laboratory.
- Infrared radiations are used for drying sample.
- Principle: The torsion wire is prestressed accurately to an extent equal to 100% of the scale reading. Then the sample is evenly distributed on the balance pan to counteract the prestressed torsion and the scale is brought back to zero. As the sample dries, the loss in weight is continuously balanced by the rotation of a drum calibrated directly to read moisture\% on wet basis.

(vi) Alcohol Method

- It is a quick method adopted in field.
- Should not be used for organic soil and soils containing calcium compound.

Determination of specific gravity of soil solids

- Pycnometer method is used.
- Instead of pycnometer, Density bottle (50 ml) OR Flask (500 ml) can also be used.

Let, $\mathrm{W}_{1}=$ Weight of empty pycnometer
$\mathrm{W}_{2}=$ Weight of pycnometer + soil sample (oven dried)
$\mathrm{W}_{3}=$ Weight of pycnometer + soil soilds + water
$\mathrm{W}_{4}=$ Weight of pycnometer + water

W

$\mathrm{W}_{4} \cap \mathrm{~W}_{4}$

$$
G=\frac{W_{2}-W_{1}}{\left(W_{2}-W_{1}\right)-\left(W_{3}-W_{4}\right)} \Rightarrow G=\frac{W_{s}}{W_{s}-W_{3}+W_{4}}
$$

Methods for the determination of insity unit weight
(A) Core-Cutter Method

- Used in case of cohesive soils.
- Cannot be used in case of hard and gravelly soils.

- The method consists of driving a core-cutter (Volume $=1000 \mathrm{cc}$) into the soil and removing it, the cutter filled with soil is weighted. Volume of cutter is known from its dimensions and in situ unit weight is obtained by dividing soil weight by volume of cutter.
- If water content is known in the laboratory, the dry unit weight can also be computed.

$$
\gamma_{d}=\frac{\gamma}{1+w}
$$

(b) Sand Replacement Method

- Used in case of hard and gravelly soils.
- A hole in ground is made. The excavated soil is weighted. The volume of hole is determined by replacing it with sand. Insitu unit weight is obtained by dividing weight of excavated soil with volume of hole.

(c) Water Displacement Method
- Suitable for cohesive soils only, where it is possible to have a lump sample.
- A regular shape, well trimmed sample is weighted. $\left(W_{1}\right)$. It is coated with paraffin wax \& again weighted $\left(\mathrm{W}_{2}\right)$. The sample is now placed in a metal container filled with water upto the brim. Let the volume of displaced water be V . Then volume of uncoated specimen is calculated as,

where, $=$ unit wt. of paraffin wax
Thus, bulk unit wt. of soil
- Sands + Gravels: Bulky grains

Bulk grains classified as - angular, Subangular, Sub rounded, rounded, well rounded

Higher angularity \propto Higher Shear Strength

- Clay Minerals: Flaky grains

Grain size distribution

Partical Sizo Analysis

Sieve analysis
[For coarse soils

- Sieve Analysis: (For Coarse Grained Soils)

The fraction retained on 4.75 mm sieve is called the gravel fraction which is subjected to coarse sieve andalysis.

The material passing 4.75 mm sieve is further subjected to fine sieve analysis if it is sand or to a combined sieve and sedimentation analysis if silt and clay sizes are also present.

- Coarse Sieves: $4.75 \mathrm{~mm}, 10 \mathrm{~mm}, 20 \mathrm{~mm}, 80 \mathrm{~mm}$.
- Fine Sieves: $75 \mu, 150 \mu, 212 \mu, 425 \mu, 600 \mu, 1 \mathrm{~mm}, 2 \mathrm{~mm}$.
- Concept of "Percentage finer"
\%retained on a particular sieve
$=\frac{\text { Weight of soil retained on that sieve }}{\text { Total weight of soil taken }} \times 100$
Cumulative \% retained = sum of \% retained on all sieves of larger sizes and the \% retained on that particular sieve.
"Percentage finer" than the sieve under reference $=100 \%$ - Cumulative \% retained.

- Sedimentation Analysis

According to stokes law, the terminal velocity is given by,
$V=\frac{g}{18} \cdot \frac{\rho_{s}-\rho_{w}}{\mu} \cdot D^{2}$
$=$ density of grains $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$\rho_{s}=$ density of water $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$\mu=$ viscosity of water
$\mathrm{g}=$ acceleration due to gravity $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
D = Diameter of grain (cm)
If ' h ' the height through which particle falls in time't', then

$$
\frac{h}{t}=k \cdot D^{2} \quad \therefore \frac{D_{1}}{D_{2}}=\sqrt{\frac{h_{1}}{h_{2}} \cdot \frac{t_{2}}{t_{1}}}
$$

- Pipette Method

In this method, the weight of solids per cc of suspension is determined directly by collecting 10 cc of soil suspension from a specified sampling depth.

If $m_{d}=$ dry mass (obtained after drying the sample) then, mass present in unit vol. of pipette
$\frac{\mathrm{m}_{d}}{\text { Vol. of pipette }\left(\mathrm{v}_{p}\right)}=\frac{\mathrm{m}_{d}}{10 \mathrm{ml} .\left(\mathrm{v}_{p}\right)}$

If $\mathrm{M}_{\mathrm{d}}=$ total mass of soil dissolved in total volume of water (V) then mass/unit volume
$=\frac{M_{d}}{V}$
Therefore, \% finer is given by = \%

$$
N=\frac{m_{d} N_{p}}{m_{d} N}
$$

In m is the mass of dispersing agent dissolved in the total volume V, then actual \% finer,

$$
\% N=\frac{\frac{\mathrm{m}_{d}}{V_{p}} \frac{m}{V}}{\frac{\mathrm{M}_{d}}{V}} \times 100
$$

- Hydrometer Method

In this method the weight of solids present at any time is calculated indirectly by reading the density of soil suspension.

- Calibration of Hydrometer

Establishing a relation between the hydrometer reading R_{H} and effective depth $\left(\mathrm{H}_{\mathrm{e}}\right)$.

The effective depth is the distance from the surface of the soil suspension to the level at which the density of soil suspension is being measured.

Effective depth is calculated as

$$
H_{e}=H_{1}+\frac{1}{2}\left(h-\frac{V_{H}}{A_{j}}\right)
$$

where, $\mathrm{H}_{1}=$ distance (cm) between any hydrometer reading and neck.
$\mathrm{h}=$ length of hydrometer bulb
$\mathrm{V}_{\mathrm{H}}=$ volume of hydrometer bulb
$A_{J}=$ area of the cross section of the jar.
Reading of Hydrometer is related to sp. gr. or density of soil suspension as:

$$
G_{S S}=1+\frac{R_{H}}{1000}
$$

Thus, a reading of $R_{H}=25$ means, $G_{s s}=1.025$ and a reading of $R_{H}=-25$ means, $\mathrm{G}_{\text {ss }}=0.975 \%$ finer is given as:

where, $\mathrm{G}=\mathrm{sp}$. gr. of soil solids
$R_{H}=$ final corrected value of hydrometer
$\mathrm{V}=$ Total volume of soil suspension
W = weight of soil mass dissolved.

- Corrections to Hydrometer Reading

(i) Meniscus correction: $\left(\mathrm{C}_{\mathrm{m}}\right)$

Hydrometer reading is always corresponding to the upper level of meniscus.
Therefore, meniscus correction is always positive $\left(+C_{m}\right)$.
(ii) Temperature correction: $\left(\mathrm{C}_{\mathrm{t}}\right)$

Hydrometers are generally calibrated at $27^{\circ} \mathrm{C}$. If the test temperature is above the standard $\left(27^{\circ} \mathrm{C}\right)$ the correction is added and, if below, it is subtracted.
(iii) Dispersing/Defloculating agent correction:

The correction due to rise in specific gravity of the suspension on account of the addition of the defloculating agent is called Dispersing agent correction $\left(\mathrm{C}_{\mathrm{d}}\right)$.
C_{d} is always negative.
The corrected hydrometer reading is given by
$\left(R_{H}\right)=R_{H}+C_{m} \pm C_{R}-C^{\square}$

- Grain Size Distribution Curves

Curve-1: Well graded soil: good representation of grain sizes over a wide range and its gradation curve is smooth.

Curve-2: Poorly graded soil/ Uniform gradation:
It is either an excess or a deficiency of certain particle sizes or has most of the particles about the same size.

Curve-3: Gap graded soil: In this case some of the particle sizes are missing.
Curve-4: Predominantly coarse soil.
Curve-5: Predominantly fine soil.
The diameter D_{10} corresponds to 10% of the sample finer in weight on the Grain size distribution curve. This diameter D_{10} is called effective size.

Similarly, D_{30} and D_{60} are grain dia. (mm) corresponding to 30% fine and 60% finer.

The shape parameters related to these are:
(A) Coefficient of Uniformity
$C_{u}=\frac{D_{60}}{D_{10}}$
(B) Coefficient of Curvature

$$
C_{c}=\frac{D_{30}^{2}}{D_{10} \times D_{60}}
$$

- for a soil to be well graded:
[$1<\mathrm{C}_{\mathrm{c}}<3$] and $[\mathrm{Cu}>4]$ for gravels:
[$C_{u}>6$] for sands.
- $\mathrm{Cu}=1$ for uniform soils/poorly graded soils.

Consistency of clays: Atterberg limits

$\mathrm{LL}=\mathrm{W}_{\mathrm{I}}=$ liquid limit
$\mathrm{PL}=\mathrm{W}_{\mathrm{p}}=$ plastic limit
$\mathrm{SL}=\mathrm{W}_{\mathrm{s}}=$ Shrinkage limit
$\mathrm{V}_{1}=$ Volume of soil mass at LL
$\mathrm{V}_{\mathrm{p}}=$ Volume of soil mass at PL
$\mathrm{V}_{\mathrm{d}}=$ Volume of soil mass at SL
$\mathrm{V}_{\mathrm{s}}=$ Volume of solids
Plasticity Index (I_{p}): It is the range of moisture content over which a soil exhibits plasticity.
$\mathrm{I}_{\mathrm{p}}=\mathrm{W}_{\mathrm{L}}-\mathrm{W}_{\mathrm{p}}$
$\mathrm{W}_{\mathrm{L}}=$ water content at LL
$\mathrm{W}_{\mathrm{p}}=$ water content at PL
If $\mathrm{PL} \geq \mathrm{LL}, \mathrm{I}_{\mathrm{p}}$ is reported as zero.
Soil classification related to plasticity index:

$\mathbf{I}_{\mathrm{p}}(\%)$	Soil Description
0	Non plastic
1 to 5	Slight plastic
5 to 10	Low plastic
10 to 20	Medium plastic
20 to 40	Highly plastic
>40	Very highly plastic

Relative Consistency or Consistency - index (\mathbf{I}_{c}): to study behaviour saturated fine grained soil at its natural water content

$$
I_{C}=\frac{W_{L}-W_{N}}{I_{p}}
$$

\therefore For $W_{N}=W_{L} \Rightarrow I_{C}=0$
For $W_{N}=W_{P} \Rightarrow I_{C}=1$
If $\mathrm{I}_{\mathrm{C}}<0$, the natural water content of soil $\left(\mathrm{w}_{\mathrm{N}}\right)$ is greater than W_{L} and the soil mass behaves like a liquid, but only upon disturbance.

If $\mathrm{IC}_{\mathrm{C}}>1$, soil is in semi solid state and will be very hard or stiff.

- Liquidity Index (I_{L})
$I_{L}=\frac{W_{N}-W_{P}}{I_{P}}$
For a soil in plastic state I_{L} varies from 0 to 1.

Consist.	Description	\mathbf{I}_{C}	\mathbf{I}_{L}
Liquid	Liquid	<0	>1
Plastic	Very soft	$0-0.25$	$0.75-1.00$
	soft	$0.25-0.5$	$0.50-0.75$
	medium stiff	$0.50-0.75$	$0.25-0.50$
	stiff	$0.75-1.00$	$0.0-0.25$
Semi-solid	Very stiff or Hard	>1	<0
Solid	Hard or very hard	>1	<0

- Flow Index (I_{f})
$I_{\mathrm{A}}=\frac{W_{1}-W_{2}}{\log 10\left(N_{2} / N_{1}\right)}$

For most of the soils: $0<I_{T}<3$
When $\mathrm{I}_{\mathrm{T}}<1$, the soil is friable (easily crushed) at the plastic limit.

- Shrinkage Ratio (SR)
where, $\mathrm{V}_{1}=$ Volume of soil mass at water content $\mathrm{w}_{1} \%$.
$\mathrm{V}_{2}=$ volume of soil mass at water content $\mathrm{w}_{2} \%$.
$\mathrm{V}_{\mathrm{d}}=$ volume of dry soil mass
Now, at $S L, w_{2}=W_{s}$ and $V_{2}=V_{d}$

$$
S R=\frac{\left(\frac{V_{1}-V_{d}}{V_{d}} \times 100\right)}{\left(W_{1}-W_{s}\right)}
$$

If $\mathrm{w}_{1} \& \mathrm{w}_{2}$ are expressed as ratio,
$S R=\frac{\left(V_{1}-V_{2}\right) / V_{d}}{W_{1}-W_{2}}$ But, $w_{1}-w_{2}=\frac{\left(V_{1}-V_{2}\right) / \gamma_{w}}{W_{s}}$
$S R=\frac{W_{s}}{V_{d}} \cdot \frac{1}{\gamma_{w}}=\frac{\gamma_{d}}{\gamma_{w}}$

Properties	Relationship	Governing Parameters
Plasticity	\propto	Plasticity Index
Better Foundation Material upon Remoulding	\propto	Consistency
Compressibility	\propto	Liquid Limit
Rate of loss in shear strength with increase in water content	\propto	Flow Index
Strength of Plastic Limit	\propto	Toughness Index

Stress-strain curve for different consistency states

(a) $I_{L}<0$ (brittle)

- Unconfined Compressive Strength (qu_{u})

Defined as the load per unit area at which an unconfined prismatic or cylindrical specimen of standard dimensions of a soil fails in a simple compression test.
$\mathrm{q}_{\mathrm{u}}=2 \mathrm{x}$ shear strength of a clay soil (under undrained condition).
q_{u} is related to consistency of clays as:

Consistency	$\mathbf{Q u}_{\mathrm{u}}\left(\mathrm{KN} / \mathbf{m}^{2}\right)$	$\mathbf{(K g / \mathbf { c m } ^ { 2 })}$
Very soft	<25	<0.25
Soft	$25-50$	$0.25-0.50$
Medium	$50-100$	$0.50-1.0$
Stiff	$100-200$	$1.0-2.0$
Very stiff	$200-400$	$2.0-4.0$
Hard	>400	>4.0

- Sensitivity $\left(\mathbf{S}_{\mathrm{t}}\right)$: It is defined as the ratio of the unconfined compressive strength of an undisturbed specimen of the soil to the unconfined compressive strength of a specimen of the same soil after remolding at unaltered water content.

$$
S_{t}=\frac{\left(\mathrm{q}_{u}\right) \text { undisturbed }}{\left(\mathrm{q}_{u}\right) \text { remoulded }}
$$

$\mathrm{S}_{\mathrm{t}} \leq 1$: in case of stiff clay having cracks and fissures.

Soil classification based on sensitivity:

Sensitivity	Classification
1	No loss in strength on remoulding
$2-4$	Soil is normal sensitive
$4-8$	Sensitive
$8-15$	Extra-Sensitive
>15	Quick

- Thixotropy: It is the property of certain clays by virtue of which they regain, ffleft alone for a time, a part of the strength lost due to remoulding, at unaltered moisture content.

Higher the sensitivity, larger the thixotropic hardening.
Activity of clay $=\frac{\text { Plasticity index }}{\% \text { by weight finer } 2 \mu}$
Activity based classification of clays

Activity	Classification
<0.75	Inactive
$0.75-1.25$	Normal
>1.25	Active

Volume change during swelling or shrinkage $=\left(I_{p}\right.$ and $\%$ clay $)$ of Activity
Classification and Structure of Soil
Classification of Soils
USCS
It is adopted by IS code. It was given by A-Casagrande. It uses particle size distribution for coarse soils and plasticity for fine soils.

Classification of Soils

Object:

Sorting soils into groups showing similar behaviour based on index property, Generally used property are

Grand Size Distribution (ii) Plasticity
Depending upon intended use different classification systems have evolved:

1. Unified Soil Classification System (USCS)

Given by Casagrande
Intended for use in Airfield, Construction

Major Soils Groups	Soil Type	Prefix	Classification Parameters
Coarse Grained	Gravel Sand	G S	Grain size distribution
Fine Grained	Silt Clay	M C	Plasticity characteristics
Organic		O	Percentage of organic matter and particles of decomposed vegetation
Peat		Pt	

Note: ISCS is a modified USCS system.

2. AASHTO Classification System

For Highway Construction

- Soil Classified into 8 groups divided into subgroups based on group index. GI.

Gl value ranges between

- O(Good Subgrade Material) to 20 (Poor Subgrade Material)

3. Indian Standard Soil Classification System (ISSCS) \% Fineness:

In the Indian Standard Soil Classification System (ISSCS), soils are classified into groups according to size, and the groups are further divided into coarse, medium and fine sub-groups.

The grain-size range is used as the basis for grouping soil particles into boulder, cobble, gravel, sand, silt or clay.

JK Chrome

JK Chrome | Employment Portal

Rated No. 1 Job Application of India

Sarkari Naukri
Private Jobs
Employment News
Study Material
Notifications

NOTIFICATIONS

JK Chrome

jk chrome
Contains ads

Install

About this app
JK Chrome updates it's users with latest news \& job updates from J\&K.

News \& Magazines

Rate this app
Tell others what you think

GET IT ON
Google play
JK Chrome

Very coarse soils	Boulder size		$>300 \mathrm{~mm}$
	Cobble size		$80-300 \mathrm{~mm}$
Coarse soils	Gravel size (G)	Coarse	$20 \cdot 80 \mathrm{~mm}$
		Fine	$4.75 \cdot 20 \mathrm{~mm}$
		Sand size (S)	Coarse
		Medium	$2 \cdot 4.75 \mathrm{~mm}$
		Fine	$0.425 \cdot 275 \cdot 0.425 \mathrm{~mm}$
Fine soils	Silt size (M)		$0.002 \cdot 0.075 \mathrm{~mm}$
	Clay size (C)		$<0.002 \mathrm{~mm}$

Gravel, sand, silt, and clay are represented by group symbols G, S, M, and C respectively.

Physical weathering produces very coarse and coarse soils. Chemical weathering produce generally fine soils.

- \% of soil passing through the 75μ sieve.

1. $\%$ Fineness $<50 \%=$ Soil contain mainly

Coarse Grained fraction otherwise Fine grained fraction
2. Fraction retained over the 75μ is undergone with plasticity studies, i.e. $W_{L}+$ Ip identifies.

Chassification chart for Coarse Grained Soll
i.e. when $\%$ fineness, Less than 50%

	Gra		Sand (S)			Remarks
	$\begin{aligned} & >1 \text { to } 3 \end{aligned}$	Poorly Graded (P) (alse)	(II)	Well graded (W) $\begin{aligned} & C_{x}>6 \\ & C_{x}=1 \text { 10 } 3 \end{aligned}$	Poonty Graded (P) (else)	
	GW	GP		SW	sp	Gradation orly govern the propertien
$\mathrm{R}+510 \mathrm{O} 2 \%$	$\begin{gathered} G W-O C \\ \text { or } \\ G W-G M \end{gathered}$	$\begin{aligned} & G P-G C \\ & \text { or } \\ & G P-G M \end{aligned}$		$\begin{gathered} S W-S C \\ \text { or } \\ S W-S M \end{gathered}$	$\begin{gathered} G P-G C \\ \text { or } \\ G P-G H \end{gathered}$	Dual symbot chock presence of either clay (C) or nill (M.), using plasticity chart
(ii) $p>12 \mathrm{~s}$	$i_{p}<7 \%$ GM	$\begin{gathered} L_{n}>7 \% \\ G C \end{gathered}$		$\begin{gathered} 1_{\mu}<4 \% \\ \mathrm{SM} \end{gathered}$	$L_{\nu}>7 \%$ SC	Prwsence of fine parficies dominate the soil characteristica

For $i_{p} 4-7 \%$, Dual Symbels used
whare $\mathrm{F}+\%$ passing through 75μ or micron sieve.

Classification sol solsed on grain size.

- On the basis of fineness, coarse grain soils are further classified

Case-I: Well fineness is $<5 \%$

1. GW - Well graded gravel

Cu .4
$1<\mathrm{Cc}<3$
Fineness < 5\%
2. GR-Poorly graded gravel

Above values of Cu and Cc are not satisfied.
3. SW-Well graded sand
$\mathrm{Cu}>6$
$1<\mathrm{Cc}<3$
4. SP - Poorly graded sand/uniformly graded sand Cu and Cc are not in range.

Case-II: If fineness is $\mathbf{5 \%}$ to $\mathbf{1 2 \%}$ the dual symbol are used.

1. $\mathrm{GW}-\mathrm{GC}$ well graded gravel containing clay.

Fineness - 5 to 12\%
Clay > Silt
Gravel > Sand
$\mathrm{Cu}>4 ; 1 \leq \mathrm{Cc} \leq 3$
2. GW - GM Well graded gravel containing silt $\mathrm{Cu}>4$
$1 \leq \mathrm{Cu} \leq 3$
Silt > Clay
Gravel > Sand
3. SW-SC Well graded sand containing clay

Sand > Gravel
Clay $>$ Silt
$\mathrm{Cu}>6$
$1 \leq \mathrm{Cc} \leq 12 \%$
4. SW - SM Well graded sand containing silt Sand > Gravel
Silt > Silt
$\mathrm{Cu}>$ Clay
$1 \leq \mathrm{Cc} \leq 3$
Fineness 5 to 12\%
For poorly graded soils like GP-GC, GP, GM, SP-SC SP-SM the values of Cu and Cc are not satisfied.

Case-III: When fineness is more than 12%
GC: Clayey gravel
Gravel > Sand
Clay > Silt $\mathrm{p} \gg 7 \%$
GM: Silty gravel
Sand< Gravel
Clay $<$ Silt $\mathrm{I}_{\mathrm{p}}<4 \%$
SC: Clayey silt
Sand > Gravel

Silti < Clay $I_{p}>7 \%$
SM: Silty sand
Sand > Gravel
Silt > Clay $\mathrm{I}_{\mathrm{p}}<4 \%$
Note: For Ip between 4 and 7, Dual Symbols are used.
Classification of Fine Soils

1. Silts (0.002 mm to 0.075 mm)

- Coarse 0.02 to 0.075 mm
- Medium 0.01 to 0.02 mm
- Fine 0.002 to 0.01 mm

2. Clay $\rightarrow<0.002 \mathrm{~mm}$
(i) Low plastic soils (LL $<\mathbf{3 5 \%}$)
$\mathrm{CL} \rightarrow$ Low plastic inorganic clay
ML \rightarrow Low plastic silt
OL \rightarrow Low plastic organic clay
(ii) Medium plastic soils ($35 \%<50 \%$)
$\mathrm{Cl} \rightarrow$ Medium plastic inorganic clay
$\mathrm{MI} \rightarrow$ Medium plastic silt
OI \rightarrow Medium plastic organic clay
(iii) High plastic soils (LL > 50\%)
$\mathrm{CH} \rightarrow$ High plastic inorganic clay
$\mathrm{MH} \rightarrow$ High plastic silt
$\mathrm{OH} \rightarrow$ High plastic organic clay

Equation of U-line $\mathrm{I}_{\mathrm{P}}=0.9\left(\mathrm{~W}_{\mathrm{L}}-8\right)$

Grain-Size Distribution Curve

The size distribution curves, as obtained from coarse and fine grained portions, can be combined to form one complete grain-size distribution curve (also known as grading curve) A typical grading curve is shown.

From the complete grain-size distribution curve, useful information can be obtained such as:

1. Grading characteristics, which indicate the uniformity and range in grain-size distribution.
2. Percentages (or fractions) of gravel, sand, silt and clay-size.

A grading curve is a useful aid to soildescription. The geometric properties of a grading curve are called grading characteristics.

To obtain the grading characteristics, three points are located first on the grading curve.
$D_{60}=$ size at 60% finer by weight
$\mathrm{D}_{30}=$ size at 30% finer by weight
$D_{10}=$ size at 10% finer by weight
The grading characteristics are then determined as follows:

1. Effective size $=D_{10}$
2. Uniformity coefficient, $C_{1}=\frac{D_{60}}{D_{10}}$
3. Curvature coefficient, $C_{c}=\frac{\left(D_{30}\right)^{2}}{D_{50} D_{10}}$

Both C_{u} and C_{c} will be 1 for a single-sized soil.
$\mathrm{C}_{u}>5$ indicates a well-graded soil, i.e. a soil which has a distribution of particles over a wide size range.
C_{c} between 1 and 3 also indicates a well-graded soil
$\mathrm{C}_{u}<3$ indicates a uniform soil, i.e. a soil which has a very narrow particle size range.

Structure of Soil

A soil particle may be a mineral or a rock fragment. A mineral is a chemical compound formed in nature during a geological process, whereas a rock fragment has a combination of one or more minerals. Based on the nature of atoms, minerals are classified as silicates, aluminates, oxides, carbonates and phosphates.

Out of these, silicate minerals are the most important as they influence the properties of clay soils. Different arrangements of atoms in the silicate minerals give rise to different silicate structures.

Basic Structural Units

Soilminerals are formed from two basic structural units: tetrahedral and octahedral. Considering the valencies of the atoms forming the units, it is clear that the units are not electrically neutral and as such do not exist as single units.

The basic units combine to form sheets in which the oxygen or hydroxyl ions are shared among adjacent units. Three types of sheets are thus formed, namely silica sheet, gibbsite sheet and brucite sheet.

Isomorphous substitution is the replacement of the central atom of the tetrahedral or octahedral unit by another atom during the formation of the sheets.

The sheets then combine to form various two-layer or three-layer sheet minerals. As the basic units of clay minerals are sheet-like structures, the particle formed from stacking of the basic units is also plate-like. As a result, the surface area per unit mass becomes very large.

- A tetrahedral unit consists of a central silicon atom that is surrounded by four oxygen atoms located at the corners of a tetrahedron. A combination of tetrahedrons forms a silica sheet.

- An octahedral unit consistsof a central ion, either aluminium or magnesium, that is surrounded by six hydroxyl ions located at the corners of an octahedron:A combination of aluminium-hydroxyl octahedrons forms a gibbsite sheet, whereas a combination of magnesium-hydroxyl octahedrons forms a brucite sheet.

Alumina Octahedron

Aluminium
Hydroxyl

Alumina Sheet

- Montmorillonite Mineral

The bonding between the three-layer units is by van der Waals forces. This
bonding is very weak and water can enter easily. Thus, this mineral can imbibe a large quantity of water causing swelling. During dry weather, there will be shrinkage.

- Illite Mineral

Illite consists of the basic montmorillonite units but are bonded by secondary valence forces and potassium ions, as shown. There is about 20% replacement of aluminium with silicon in the gibbsite sheet due to isomorphous substitution. This mineral is very stable and does not swell or shrink.

- Kaolinite Mineral

A basic kaolinite unit is a two-layer unit that is formed by stacking a gibbsite sheet on a silica sheet. These basic units are then stacked one on top of the other to form a lattice of the mineral. The units are held together by hydrogen bonds. The strong bonding does not permit water to enter the lattice. Thus, kaolinite minerals are stable and do not expand under saturation.

Kaolinite is the most abundant constituent of residual clay deposits.

	Clay mineral	Properties
1.	Kaolinite mineral	Hydrogen bond is there which is strongest bond. Ex Chine clay
2.	Illite mineral	lonie bond. Medium change in volume due to maisture change.
3.	Mont morillonite	Water bond which is weakest bond. Max change in volume due to moisture change. Ex. Black soils \& Bentonite soils

Compaction of Soil \& Stress distribution in soils

Compaction of Soil

Compaction is the application of mechanical energy to soil so as to rearrange its particles and reduce the void ratio.

It is applied to improve the properties of existing soil or in the process of placing fill such as in the construction of embankments, road bases, runways, earth dams, and reinforced earth walls. Compaction is also used to prepare a level surface during construction of buildings. There is usually no change in the water content and in the size of the individual soil particles.

The objectives of compaction are:

- To increase soil shear strength and therefore its bearing capacity.
- To reduce subsequent settlement under working loads.
- To reduce soil permeability making it more difficult for water to flow through.

Laboratory Compaction

The variation in compaction with water content and compactive effort is first determined in the laboratory. There are several tests with standard procedures such as:

- Indian Standard Light Compaction Test (similar to Standard Proctor Test/Light Compaction Test)
- Indian Standard Heavy Compaction Test (similar to Modified Proctor Test/Heavy Compaction Test)

Standard proctor test (Light compaction test)	Modified proctor test (Heavy compaction test)
Volume of mould 942 cc	Volume of mould 942 cc
No. of layers -3	No. of layers -5
No. of blows per layer -25	No. of blows per layer -25
Height of free fall -304.8 mm (12 inches)	Height of free fall -457.2 $\mathrm{~mm}(18$ inches)
Wt. of hammer -2.495 kg $(5.5 / b)$	Wt. of hammer -4.54 kg $(10 / \mathrm{b})$

Indian Standard Light Compaction Test

Soil is compacted into a $1000 \mathrm{~cm}^{3}$ mould in 3 equal layers, each layer receiving $\mathbf{2 5}$ blows of a $\mathbf{2 . 6} \mathbf{~ k g}$ rammer dropped from a height of $\mathbf{3 1 0} \mathbf{~ m m}$ above the soil. The compaction is repeated at various moisture contents.

- Indian Standard Heavy Compaction Test

It was found that the Light Compaction Test (Standard Test) could not reproduce the densities measured in the field under heavier loading conditions, and this led to the development of the Heavy Compaction Test (Modified Test). The equipment and procedure are essentially the same as that used for the Standard Test except that the soil is compacted in 5 layers, each layer also receiving 25 blows. The same mould is also used. To provide the increased compactive effort, a heavier rammer of $4.9 \mathbf{~ k g}$ and a greater drop height of $\mathbf{4 5 0} \mathbf{~ m m}$ are used.

Compactive energy applied per unit

$$
\text { Volume }=\frac{w H_{n} N}{V}
$$

Indian standard light compaction	Indian standard heayy compaction
V - Volume of mould 1000 cc	Volume of mould 1000 cc
H - Height of free fall 310 mm	Height of free fall 450 mm
W - Wt. of hammer 2.6 kg	Wt. of hammer 4.9 kg
N - No. of layers 3	No. of layers 5
N - Blows per layer $\mathbf{2 5}$	Blows per layer $\mathbf{2 5}$

- The ratio of total energy given in heavy compaction test to that given in light compaction test

$$
=\frac{4.9 \times g \times(5 \times 25) \times 450}{2.6 \times g \times(3 \times 25) \times 310}=4.5
$$

Dry Density - Water Content Relationship

- To assess the degree of compaction, it is necessary to use the dry unit weight, which is an indicator of compactness of solid soil particles in a given volume.
- Laboratory testing is meant to establish the maximum dry density that can be attained for a given soil with a standard amount of compactive effort.

In the test, the dry density cannot be determined directly, and as such the bulk density and the moisture content are obtained first to calculate the dry density as

$$
y_{d}=\frac{y_{t}}{1+w}
$$

where $\gamma_{d}=$ bulk density, and $w=$ water content.

- A series of samples of the soil are compacted at different water contents, and a curve is drawn with axes of dry density and water content. The resulting plot usually has a distinct peak as shown. Such inverted "V" curves are obtained for cohesive soils (or soils with fines), and are known as compaction curves.

- Dry density can be related to water content and degree of saturation (S) as

$$
\gamma_{d}=\frac{G_{s}, \gamma_{w}}{1+e}=\frac{G_{3} \cdot \gamma_{w}}{1+\frac{w G_{3}}{S}}
$$

Thus, it can be visualized that an increase of dry density means a decrease of voids ratio and a more compact soil.

Similarly, dry density can be related to percentage air voids (n_{a}) as

$$
\left(1-x_{a}\right) G_{s}, Y_{w}
$$

$$
1+w G_{s}
$$

Relation between moisture content and dry unit weight for a saturated soil is the zero air-voids line. It is not feasible to expel air completely by compaction, no matter how much compactive effort is used and in whatever manner.

Effect of Increasing Water Content

- As water is added to a soil at low moisture contents, it becomes easier for the particles to move past one another during the application of compacting force. The particles come closer, the voids are reduced and this causes the dry density to increase. As the water content increases, the soil particles develop larger water films around them.
- This increase in dry density continues till a stage is reached where the water starts occupying the space that could have been occupied by the soil grains. Thus the water at this stage hinders the closer packing of grains and reduces the dry unit weight. The maximum dry density (MDD) occurs at an optimum water content (OMC), and their values can be obtained from the plot.

Effect of Increasing Compactive Effort

- The effect of increasing compactive effort is shown. Different curves are obtained for different compactive efforts. A greater compactive effort reduces the optimum moisture content and increases the maximum dry density.

- An increase in compactive effort produces a very large increase in dry density for soil when it is compacted at water contents drier than the optimum moisture content. It should be noted that for moisture contents greater than the optimum, the use of heavier compaction effort will have only a small effect on increasing dry unit weights.

It can be seen that the compaction curve is not a unique soil characteristic. It depends on the compaction effort. For this reason, it is important to specify the compaction procedure (light or heavy) when giving values of MDD and OMC.

Factors Affecting Compaction

The factors that influence the achieved degree of compaction in the laboratory are:

- Plasticity of the soil
- Water content
- Compactive effort

Compaction of Cohesionless Soils

For cohesionless soils (or soils without any fines), the standard compaction tests are difficult to perform. For compaction, application of vibrations is the most effective method. Watering is another method. To achieve maximum dry density, they can be compacted either in a dry state or in a saturated state.

- For these soil types, it is usual to specify a magnitude of relative density (I_{D}) that must be achieved. If \mathbf{e} is the current void ratio or g_{d} is the current dry density, the relative density is usually defined in percentage as

$$
I_{D}=\frac{\sigma_{\max }-e}{e_{\max }-e_{\min }} \times 100
$$

or

$$
I_{D}=\frac{\gamma_{d \max }\left(\gamma_{d}-\gamma_{d \min }\right)}{\gamma_{d}\left(\gamma_{\text {daini }}-\gamma_{d \operatorname{man}}\right)} \times 100
$$

where $\mathbf{e}_{\text {max }}$ and $\mathbf{e}_{\text {min }}$ are the maximum and minimum void ratios that can be determined from standard tests in the laboratory, and $\mathbf{g}_{d m i n}$ and $\mathbf{g}_{d m a x}$ are the respective minimum and maximum dry densities

On the basis of relative density, sands and gravels can be grouped into different categories:

Relative density (\%) Classification

<15	Very loose
$15-35$	Loose
$35-65$	Medium
$65-85$	Dense

> 85 Very dense

It is not possible to determine the dry density from the value of the relative density. The reason is that the values of the maximum and minimum dry densities (or void ratios) depend on the gradation and angularity of the soil grains.

Engineering Behaviour of Compacted Soils

The water content of a compacted soil is expressed with reference to the OMC. Thus, soils are said to be compacted dry of optimum or wet of optimum (i.e. on the dry side or wet side of OMC). The structure of a compacted soil is not similar on both sides even when the dry density is the same, and this difference has a strong influence on the engineering characteristics.

1. Soil Structure

For a given compactive effort, soils have a flocculated structure on the dry side (i.e. soil particles are oriented randomly), whereas they have a dispersed structure on the wet side (i.e. particles are more oriented in a parallel arrangement perpendicular to the direction of applied stress). This is due to the well-developed adsorbed water layer (water film) surrounding each particle on the wet side.

Flocculated (dry side) Dispersed (wet side)

2. Swelling

Due to a higher water deficiency and partially developed water films in the dry side, when given access to water, the soil will soak in much more water and then swell more.

3. Shrinkage

During drying, soils compacted in the wet side tend to show more shrinkage than those compacted in the dry side. In the wet side, the more orderly orientation of particles allows them to pack more efficiently.
4. Construction Pore Water Pressure

The compaction of man-made deposits proceeds layer by layer, and pore water pressures are induced in the previous layers. Soils compacted wet of optimum will have higher pore water pressures compared to soils
compacted dry of optimum, which have initially negative pore water pressure.
5. Permeability

The randomly oriented soil in the dry side exhibits the same permeability in all directions, whereas the dispersed soil in the wet side is more permeable along particle orientation than across particle orientation.
6. Compressibility

At low applied stresses, the dry compacted soil is less compressible on account of its truss-like arrangement of particles whereas the wet compacted soil is more compressible.

The stress-strain curve of the dry compacted soil rises to a peak and drops down when the flocculated structure collapses. At high applied stresses, the initially flocculated and the initially dispersed soil samples will have similar structures, and they exhibit similar compressibility and strength.

Some extra details about compaction -

	Type of Equipment	Suitability for soil type	Nature of project
1	Rammers or Tampers	All soils	In confined areas such as fils behind retaining walls, basement walls etc. Trench fills.
2	Smooth wheeled rollers	Crushed rocks, gravels sands	Road construction
3	Pneumatic tyred rollers	Sand, gravels silts, clayey solls	Base, sub-base and embankment compaction for highways, air fields etc. Earth dams.
4	Sheep foot Rollers	Clayey solls	Core of earth dams.
$\mathbf{5}$	Vibratory Rollers	Sands	Embankment for oll storage tanks etc.

1. Coarse grained well graded - Higher $\gamma \mathrm{d}$
2. In clays with higher plasticity $-\gamma_{d}$ decrease
3. V shape due to bulking of pure sand

Stress Distribution in The Soil

At a point within a soil mass, stresses will be developed as a result of the soil lying above the point and by any structural or other loading imposed onto that soil mass .

Stress in the soil may be caused by:

1. Self weight of soil
2. Applied load on soil

Finitely loaded area

If the surface loading area is finite (point, circular, strip, rectangular, square), the vertical stress increment in the subsoil decreases with increase in the depth and the distance from the surface loading area.

Methods have been developed to estimate the vertical stress increment in sub-soil considering the shape of the surface loading area.

Boussinesq's Theory

Point Load

A point load or a Concentrated load is, strictly speaking, hypothetical in nature, consideration of it serves a useful purpose in arriving at the solutions for more complex loadings in practice.

Assumptions made by Boussinesq.

(i) The soil medium is an elastic, homogeneous, isotropic and semi-infinite medium, which infinitely in all directions from a level surface.
(ii) The medium obeys Hookes law.
(iii) The self-weight of the soil is ignored.
(iv) The soil is initially unstressed
(v) The change in volume of the soil upon application of the loads on to it is neglected.
(vi) The top surface of the medium is free of shear stress and is subjected to only the point load at a specified location.
(vii) Continuity of stress is considered to exist in the medium.
(viii) The stresses are distributed symmetrically with respect to z axis.

The Boussinesq equations are as follows :

$$
\begin{aligned}
& \sigma_{z}=\frac{3 Q}{2 \pi} \frac{Z^{3}}{R^{3}} \\
& =\frac{3 Q}{2 \pi} \frac{\cos ^{2} \theta}{Z^{2}} \\
& =\frac{3 Q}{2 \pi} \frac{Z^{3}}{\left(r^{2}+z^{2}\right)^{1 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{3}=\frac{Q}{2 \pi}\left[\frac{3 x^{2} Z}{R^{3}}-(1-2 v)\left\{\frac{x^{2}-y^{2}}{R r^{2}(R+Z)}+\frac{y^{2} Z}{R^{3} r^{2}}\right\}\right] \\
& \sigma_{y}=\frac{Q}{2 \pi}\left[\frac{3 y^{2} Z}{R^{3}}-(1-2 v)\left\{\frac{y^{2}-x^{2}}{R r^{2}(R+Z)}+\frac{x^{2} Z}{R^{3} r^{2}}\right\}\right] \\
& \sigma_{\pi}=\frac{3 Q}{2 \pi} \frac{\cos \theta}{R^{2}} \\
& \sigma_{r}=\frac{Q}{2 \pi}\left[\frac{3 z r^{2}}{R^{2}}-\frac{(1-2 v)}{R(R+Z)}\right] \\
& \tau_{r z}=\left(3 Q r Z^{2}\right) /\left(2 \pi R^{5}\right) \\
& =\frac{3 Q r}{2 \pi Z^{3}}\left[\frac{1}{1+(r / z)^{2}}\right]^{-1 / 2}
\end{aligned}
$$

Equations (1) may be rewritten as $\sigma_{ \pm}=K_{z} \frac{Q}{Z^{2}}$
where K_{k}, Boussinesq's influence factor is given by:

$$
K_{i}=\frac{(3 / 2 \pi)}{\left[1+(r / z)^{2}\right]^{\gamma / 2}}
$$

This intensity of vertical stress directly below the point load, on its axis of loading $(r=0)$ is given by:
$\sigma_{z}=\frac{0.4775 Q}{Z^{2}}$

The vertical stress on a horizontal plane at depth „Z" is given by

$$
\sigma_{z}=K_{A} \frac{Q}{Z^{2}}
$$

Z being a specified depth.

Boussinesq's Result

$\left.\sigma_{z}\right|_{\max }=0.0888 \frac{Q}{{ }_{r}^{2}}$
$\left.\sigma_{z}\right|_{\max }=0.1332 \frac{Q^{2}}{2^{2}}$

Westergaard's Theory

(i)

$$
\sigma_{z}=\frac{Q}{\pi z^{2}}\left[\frac{1}{1+\frac{2 r^{2}}{z^{2}}}\right]^{3 / 2}
$$

(ii)

$$
\sigma_{z}=k_{W} \cdot \frac{Q}{z^{2}}
$$

(iii) $\left.k_{w}\right|_{\max }=0.3183$

Westergaard's Results

(i) Vertical Stresss due to Live Loads

$$
\sigma_{z}=\frac{2 q^{\prime}}{\pi z}\left[\frac{1}{1+\frac{X^{2}}{z^{2}}}\right]^{2}
$$

where, $\sigma_{z}=$ Vertical stress of any point having coordinate (x, z)
Load intensity $=\mathrm{q} / \mathrm{m}$
at $X=0$
$\sigma_{z}=\frac{2 q^{\prime}}{\pi z}$

(ii) Vertical Stress due to Strip Loading

$$
\sigma_{z}=\frac{2 q}{\pi}\left(\frac{X}{B} \alpha-\frac{\sin 2 \beta}{2}\right)
$$

where, $\sigma_{z}=$ Vertical stress at point ' p '

(iv) Vertical stress below uniform load acting on a circular area.
$\sigma_{z}=q\left(1-\cos ^{3} \theta\right)$
where, $\cos \theta=\frac{z}{\sqrt{r^{2}+z^{2}}}$

Newmark's Chart Method (Uniform Load on irregular Areas)

- Newmark (1942) constructed influence chart, based on the Boussinesq solution to determine the vertical stress increase at any point below an area of any shape carrying uniform pressure.
- This method is applicable to semi-infinite, homogeneous, isotropic and elastic soil mass. It is not applicable for layered structure.
- The greatest advantage of this method is that it can be applied for a uniformly distributed area of an irregular shape.
- Chart consists of influence areas which have an influence value of 0.005 per unit pressure.
- Position the loaded area on the chart such that the point at which the vertical stress required is at the centre of the chart.
- Newmark's chart is made of concentric circles and radial lines. Normally there are 10 concentric circles and 20 radial lines.

No. of concentric circle $=10$
No. of radial lines $=20$

Influence of area (1)= Influence of area (2) = Influence of area (3)

Influence of each area
$=\frac{1}{\text { Total no of sectoral area }}=0.005$
$\sigma_{z}=0.005 q N_{A}$
where, $\mathrm{N}_{\mathrm{A}}=$ Total number of sectorial area of Newmark's chart.

Approximate method
(i) Equivalent Load Method

$$
\sigma_{z}=\sigma_{z_{1}}+\sigma_{z_{2}}+\sigma_{z_{3}}+\ldots
$$

where,
$\sigma_{z_{1}}=k_{B_{1}} \frac{Q_{1}}{Z^{2}} \sigma_{z_{2}}=k_{B_{2}} \cdot \frac{Q_{2}^{2}}{Z^{2}} \ldots$

(ii) Trapezoidal Method
σ_{z} at depth $\quad z^{\prime}=\frac{q(B \times L)}{(B+2 \eta z)(L+2 \eta z)}$
For 1H: 1 V

$$
\begin{aligned}
& \sigma_{z}=\frac{q(B \times L)}{(B+2 z)(L+2 z)} \\
& \sigma_{z}=\frac{q(B \times L)}{(B+4 z)(L+4 z)}
\end{aligned}
$$

Area bounded by 0.2 q stress isobar is considered to be stressed by vertical stress on loading.
$0.2 \mathrm{q}=20 \%$ Stress Isobar

Q. A concentrated load of 22.5 KN acts on the surface of a homogencols soil thass of large extent. Find the stress intensity at a depth of 15 metres and (i) direenly under the load, and (ii) at a horizontal distance of 7.5 metres. Use Boussinesq's equations.
A : According to Boussinesq's theory,

(i) Directly under the load:

$$
\begin{aligned}
\mathrm{r} & =0 ; \therefore r / z=0 \\
\mathrm{z} & =15 \mathrm{~m}, \mathrm{Q}=22.5 \mathrm{KN} \\
\therefore \sigma_{t} & =\frac{22.5}{15 \times 15} \cdot \frac{(3 / 2 \pi)}{\left.(1+8)^{5}\right)} \\
= & 47.75 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

(ii) At y thanizontal distance of 7.5 metres :-

$$
\begin{gathered}
\mathrm{r}=8 \mathrm{~m}, \mathrm{z}=15 \mathrm{~m} \\
\mathrm{rz}-7.5 / 15=0.5
\end{gathered}
$$

$$
\begin{aligned}
\sigma_{z}= & \frac{22.5}{15 \times 15} \cdot \frac{(3 / 2 \pi)}{\left[\left(1+(0.5)^{2}\right)\right]^{8 / 2}} \\
& =27.33 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Principle of Effective Stress \& Darcy's Law and 1D-Permeability

Effective Stress Principle, Capillarity \& Seepage

Stresses in the Ground

Total Stress

When a load is applied to soil, it is carried by the solid grains and the water in the pores. The total vertical stress acting at a point below the ground surface is due to the weight of everything that lies above, including soil, water, and surface loading. Total stress thus increases with depth and with unit weight.

Vertical total stress at depth $\mathbf{z}, \mathbf{s}_{\mathbf{v}}=\mathbf{g . Z}$

Below a water body, the total stress is the sum of the weight of the soil up to the surface and the weight of water above this. $\mathbf{s}_{\mathbf{v}}=\mathbf{g} \cdot \mathbf{Z}+\mathbf{g}_{\mathrm{w}} \cdot \mathbf{Z}_{\mathbf{w}}$

The total stress may also be denoted by $\mathbf{s}_{\boldsymbol{z}}$ or just \mathbf{s}. It varies with changes in water level and with excavation.

Pore, Water Pressure

The pressure of water in the pores of the soil is called pore water pressure (u). The magnitude of pore water pressure depends on:

- the depth below the water table.
- the conditions of seepage flow.

Under hydrostatic conditions, no water flow takes place, and the pore pressure at a given point is given by
$\mathbf{u}=\mathbf{g}_{\mathrm{w}} . \mathrm{h}$
where $\mathrm{h}=$ depth below water table or overlying water surface
It is convenient to think of pore water pressure as the pressure exerted by a column of water in an imaginary standpipe inserted at the given point.

The natural level of ground water is called the water table or the phreatic surface. Under conditions of no seepage flow, the water table is horizontal. The magnitude of the pore water pressure at the water table is zero. Below the water table, pore water pressures are positive.

Principle of Effective Stress

The principle of effective stress was enunciated by Karl Terzaghi in the year 1936. This principle is valid only for saturated soils, and consists of two parts:

1. At any point in a soil mass, the effective stress (represented by σ^{\prime} or s^{\prime}) is related to total stress (s)and pore water pressure (u) as
$\sigma=s-u$
Both the total stress and pore water pressure can be measured at any point.
2. All measurable effects of a change of stress, such as compression and a change of shearing resistance, are exclusively due to changes in effective stress.

Compression $=f_{1}\left(\sigma^{\prime}\right)$
Shear Strength $=f_{2}\left(\sigma^{\prime}\right)$

In a saturated soil system, as the voids are completely filled with water, the pore water pressure acts equally in all directions.

The effective stress is not the exact contact stress between particles but the distribution of load carried by the soil particles over the area considered. It cannot be measured and can only be computed.

If the total stress is increased due to additional load applied to the soil, the pore water pressure initially increases to counteract the additional stress. This increase in pressure within the pores might cause water to drain out of the soil mass, and the load is transferred to the solid grains. This will lead to the increase in effective stress.

Effective Stress in Unsaturated Zone

Above the water table, when the soil is saturated, pore pressure will be negative (less than atmospheric). The height above the water table to which the soil is saturated is called the capillary rise, and this depends on the grain size and the size of pores. In coarse soils, the capillary rise is very small.

Between the top of the saturated zone and the ground surface, the soil is partially saturated, with a consequent reduction in unit weight. The pore pressure in a partially saturated soil consists of two components:

Pore water pressure $=\mathrm{u}_{\mathrm{w}}$
Pore air pressure $=u_{a}$
Water is incompressible, whereas air is compressible. The combined effect is a complex relationship involving partial pressures and the degree of saturation of the soil.

Effective Stress Under Hydrodynamic Conditions

There is a change in pore water pressure in conditions of seepage flow within the ground. Consider seepage occurring between two points \mathbf{P} and \mathbf{Q}. The potential driving the water flow is the hydraulic gradient between the two points, which is equal to the head drop per unit length. In steady state seepage, the gradient remains constant.

Hydraulic gradient from P to $\mathrm{Q}, \mathrm{i}=\mathrm{dh} / \mathrm{ds}$
As water percolates through soil, it exerts a drag on soil particles it comes in contact with. Depending on the flow direction, either downward of upward, the drag either increases or decreases inter-particle contact forces.

A downward flow increases effective stress.
In contrast, an upward flow opposes the force of gravity and can even cause to counteract completely the contact forces. In such a situation, effective stress is reduced to zero and the soil behaves like a very viscous liquid. Such a state is known as quick sand condition. In nature, this condition is usually observed in coarse silt or fine sand subject to artesian conditions.

At the bottom of the soil column,

$$
\begin{aligned}
& \sigma=\gamma \cdot L \\
& u=\gamma_{\pi}(L+\Delta H)
\end{aligned}
$$

During quick sand condition, the effective stress is reduced to zero.
$L\left(\gamma-\gamma_{\boldsymbol{*}}\right)=\gamma_{-} . \Delta H$
$L . \gamma_{2}=\gamma_{\pi} \Delta H$
$\frac{\Delta H}{L}=\frac{\gamma_{b}}{\gamma_{w}}=i_{e_{n}}{ }_{n}$
where $\mathrm{i}_{\mathrm{cr}}=$ critical hydraulic gradient
This shows that when water flows upward under a hydraulic gradient of about 1 , it completely neutralizes the force on account of the weight of particles, and thus leaves the particles suspended in water.

The Importance of Effective Stress

- At any point within the soil mass, the magitudes of both total stress and pore water pressure are dependent on the ground water position. With a shift in the water table due to seasonal fluctuations, there is a resulting change in the distribution in pore water pressure with depth.
- Changes in water level below ground result in changes in effective stresses below the water table. A rise increases the pore water pressure at all elevations thus causing a decrease in effective stress. In contrast, a fall in the water table produces an increase in the effective stress.
- Changes in water level above ground do not cause changes in effective stresses in the ground below. A rise above ground surface increases both
the total stress and the pore water pressure by the same amount, and consequently effective stress is not altered.
- If both total stress and pore water pressure change by the same amount, the effective stress remains constant.
- Total and effective stresses must be distinguishable in all calculations.Ground movements and instabilities can be caused by changes in total stress, such as caused by loading by foundations and unloading due to excavations. They can also be caused by changes in pore water pressures, such as failure of slopes after rainfall.

Permeability

Permeability of Soil

The permeability of a soil is a property which describes quantitatively, the ease with which water flows through that soil.

Darcy's Law : Darcy established that the flow occurring per unit time is directly proportional to the head causing flow and the area of cross-section of the soil sample but is inversely proportional to the length of the sample.

(i) Rate of flow (q)

Where, $\mathrm{q}=$ rate of flow in $\mathrm{m}^{3} / \mathrm{sec}$.
$\mathrm{K}=$ Coefficient of permeability in m / s
I = Hydraulic gradient

A = Area of cross-section of sample
$i=\frac{H_{L}}{L}$
where, $\mathrm{H}_{\mathrm{L}}=$ Head loss $=\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)$
$i=\tan \theta \frac{d y}{d x}$
(ii) Seepage velocity
$V_{s}=\frac{V}{n}$
where, $\mathrm{V}_{\mathrm{s}}=$ Seepage velocity ($\mathrm{m} / \mathrm{sec}$)
$\mathrm{n}=$ Porosity \& V = discharge velocity (m/s)
(iii) Coefficiency of percolation
$K_{P}=\frac{K}{n}$
where, $K_{p}=$ coefficiency of percolation and $\mathrm{n}=$ Porosity.
Constant Head Permeability Test
$K=\frac{Q L}{t H_{L} A}$
where, $\mathrm{Q}=$ Volume of water collected in time t in m^{3}.
Constant Head Permeability test is useful for coarse grain soil and it is a laboratory method.

$h_{2}=$ level of upstream edge after ' t '.

$K=\frac{1}{C} \cdot \frac{1}{s^{2}} \cdot \frac{e^{3}}{1+e}$
Where, $C=$ Shape coefficient, $\sim 5 \mathrm{~mm}$ for spherical particle
$\mathrm{S}=$ Specific surface area $=\frac{\text { Area }}{\text { Volume }}$

For spherical particle.

$S=\frac{4 \pi R^{2}}{\frac{4}{3} \pi R^{3}}=\frac{6}{\text { Diameter }}$
$\mathrm{R}=$ Radius of spherical particle.

$$
S=\frac{6}{\sqrt{a b}}
$$

When particles are not spherical and of variable size. If these particles passes through sieve of size 'a' and retain on sieve of size ' n '.
$e=$ void ratio
$\mu=$ dynamic viscosity, in (N-s/m²)
$\gamma_{w}=$ unit weight of water in $\mathrm{kN} / \mathrm{m}^{3}$
$\frac{k_{1}}{k_{2}}=\frac{e_{1}^{2}}{e_{2}^{2}}$

Allen Hazen Equation

$K=C \cdot D_{10}^{2}$

Where, $\mathrm{D}_{10}=$ Effective size in $\mathrm{cm} . \mathrm{k}$ is in $\mathrm{cm} / \mathrm{s} \mathrm{C}=100$ to 150
Lioudens, Equation
$\log _{10} K S^{2}=a+b . n$
Where, $s=$ Specific surface area
$\mathrm{n}=$ Porosity.
a and b are constant.
Consolidation equation
$K=C_{v} m_{v} \gamma_{w}$
Where, $\mathrm{C}_{\mathrm{v}}=$ Coefficient of consolidation in $\mathrm{cm}^{2} / \mathrm{sec}$
$m_{v}=$ Coefficient of volume Compressibility in $\mathrm{cm}^{2} / \mathrm{N}$
Capillary Permeability Test

where, $\mathrm{S}=$ Degree of saturation
$\mathrm{K}=$ Coefficient of permeability of partially saturated soil.
$\frac{X_{2}^{\prime 2}-X_{1}^{\prime 2}}{t_{2}^{\prime}-t}=\frac{2 K_{1}}{S n_{2}}\left[h_{c_{2}}+h_{c}\right]$
where $h_{c}=$ remains constant (but not known as depends upon soil)
= head under first set of observation,
$\mathrm{n}=$ porosity, $\mathrm{h}_{\mathrm{c}}=$ capillary height
Another set of data gives,
$h_{o o_{2}}=$ head under second set of observation

- For $S=100 \%, K=$ maximum. Also, $\mathrm{k}_{\mathrm{u}} \propto \mathrm{S}$.

Permeability of a stratified soil
(i) Average permeability of the soil in which flow is parallel to bedding plane,
$K_{e q}=\frac{k_{1} z_{1}+k_{2} z_{2}+\ldots k_{n} z_{n}}{z_{1}+z_{2}+\ldots+z_{n}} k_{e q} \sim k_{x}$

(ii) Average permeability of soil in which flow is perpendicular to bedding plane.

(iii) For 2-D flow in x and z direction

$$
k_{e q}=\sqrt{k_{x} \cdot k_{z}}
$$

(iv) For 3-D flow in x, y and z direction $k_{e q}=\left(k_{x} \cdot k_{y} \cdot k_{z}\right)^{1 / 3}$

Coefficient of absolute permeability (k_{0})

$$
k_{0}=k \cdot \frac{\mu}{\gamma_{w}}
$$

Consolidation and Compressibility

Compression and Consolidation of Soils

When a soillayer is subjected to vertical stress, volume change can take place throughrearrangement of soil grains, and some amount of grain fracture may also take place. The volume of soil grains remains constant, so change in total volume is due to change in volume of water. In saturated soils, this can happen only if water is pushed out of the voids. The movement of water takes time and is controlled by the permeability of the soil and the locations of free draining boundary surfaces.

It is necessary to determine both the magnitude of volume change (or the settlement) and the time required for the volume change to occur. The
magnitude of settlement is dependent on the magnitude of applied stress, thickness of the soil layer, and the compressibility of the soil.

When soil is loaded undrained, the pore pressure increases. As the excess pore pressure dissipates and water leaves the soil, settlement takes place. This process takes time, and the rate of settlement decreases over time. In coarse soils (sands and gravels), volume change occurs immediately as pore pressures are dissipated rapidly due to high permeability. In fine soils (silts and clays), slow seepage occurs due to low permeability.

Components of Total Settlement

The total settlement of a loaded soil has three components: Elastic settlement, primary consolidation, and secondary compression.

Elastic settlement is on account of change in shape at constant volume, i.e. due to vertical compression and lateral expansion. Primary consolidation (or simply consolidation) is on account of flow of water from the voids, and is a function of the permeability and compressibility of soil. Secondary compression is on account of creep-like behaviour.

Primary consolidation is the major component and it can be reasonably estimated. A general theory for consolidation, incorporating three-dimensional flow is complicated and only applicable to a very limited range of problems in geotechnical engineering. For the vast majority of practical settlement problems, it is sufficient to consider that both seepage and strain take place in one direction only, as one-dimensional consolidation in the vertical direction.

Compressibility Characteristics

Soils are often subjected to uniform loading over large areas, such as from wide foundations, fills or embankments. Under such conditions, the soil which is remote from the edges of the loaded area undergoes vertical strain, but no horizontal strain. Thus, the settlement occurs only in one-dimension.

The compressibility of soils under one-dimensional compression can be described from the decrease in the volume of voids with the increase of effective stress. This relation of void ratio and effective stress can be depicted either as an arithmetic plot or a semi-log plot.

In the arithmetic plot as shown, as the soil compresses, for the same increase of effective stress Ds', the void ratio reduces by a smaller magnitude,
from De_{1} to De_{2}. This is on account of an increasingly denser packing of the soil particles as the pore water is forced out. In fine soils, a much longer time is required for the pore water to escape, as compared to coarse soils.

It can be said that the compressibility of a soil decreases as the effective stress increases. This can be represented by the slope of the void ratio - effective stress relation, which is called the coefficient of compressibility, a_{v}.
$a_{v}=-\frac{d e}{d \sigma^{\prime}}$

For a small range of effective stress, $a_{v}=-\frac{\Delta e}{\Delta \sigma^{\prime}}$
The -ve sign is introduced to make a_{v} a positive parameter.
If \mathbf{e}_{0} is the initial void ratio of the consolidating layer, another useful parameter is the coefficient of volume compressibility, m_{v}, which is expressed as

It represents the compression of the soil, per unit original thickness, due to a unit increase of pressure.

NC \& OC Clays

OP corresponds to initial loading of the soil. PQ corresponds to unloading of the soil. QFR corresponds to a reloading of the soil. Upon reloading beyond \mathbf{P}, the soil continues along the path that it would have followedifloaded from \mathbf{O} to R continuously.

The preconsolidation stress, $s^{\prime}{ }_{p c}$, is defined to be the maximum effective stress experienced by the soil. This stress is identified in comparison with the effective stress in its present state. For soil at state Q or F, this would correspond to the effective stress at point \mathbf{P}.

If the current effective stress, s ', is equal (note that it cannot be greater than) to the preconsolidation stress, then the deposit is said to be normally consolidated (NC). If the current effective stress is less than the preconsolidation stress, then the soil is said to be over-consolidated (OC).

It may be seen that for the same increase in effective stress, the change in void ratio is much less for an overconsolidated soil (from \mathbf{e}_{0} to \mathbf{e}_{f}), than it would have been for a normally consolidated soil as in path OP. In unloading, the soil swells but the increase in volume is much less than the initial decrease in volume for the same stress difference.

The distance from the normal consolidation line has an important influence on soil behaviour. This is described numerically by the overconsolidation ratio (OCR), which is defined as the ratio of the preconsolidation stress to the current effective stress.
$O C R=\frac{\sigma_{p c}^{\prime}}{\sigma^{\prime}}$
Note that when the soil is normally consolidated, OCR $=\mathbf{1}$

Settlements will generally be much smaller for structures built on overconsolidated soils. Most soils are overconsolidated to some degree. This can be due to shrinking and swelling of the soil on drying and rewetting, changes in ground water levels, and unloading due to erosion of overlying strata.

For NC clays, the plot of void ratio versus log of effective stress can be approximated to a straight line, and the slope of this line is indicated by a parameter termed as compression index, \mathbf{C}_{c}.

$$
C_{C}=\frac{\Delta}{\log _{10}\left(\frac{\sigma_{2}^{\prime}}{\sigma_{1}^{\prime}}\right)}
$$

Estimation of Preconsolidation Stress

It is possible to determine the preconsolidation stress that the soil had experienced. The soil sample is to be loaded in the laboratory so as to obtain the void ratio - effective stress relationship. Empirical procedures are used to estimate the preconsolidation stress, the most widely used being Casagrande's construction which is illustrated.

The steps in the construction are:

- Draw the graph using an appropriate scale.
- Determine the point of maximum curvature \mathbf{A}.
- At \mathbf{A}, draw a tangent $\mathbf{A B}$ to the curve.
- At A, draw a horizontal line AC.
- Draw the extension ED of the straight line portion of the curve.
- Where the line ED cuts the bisector AF of angle CAB, that point corresponds to the preconsolidation stress.

Coefficient of Compression (\mathbf{C}_{c})

$$
C_{c}=\frac{e_{1}-e_{2}}{\log _{10}\left(\frac{\overline{\sigma_{2}}}{\overline{\sigma_{1}}}\right)}
$$

B.

$$
C_{c}=0.009\left(W_{L}-10\right)
$$

For undisturbed soil of medium sensitivity.
$\mathrm{W}_{\mathrm{L}}=\%$ liquid limit.
C.

$$
C_{c}=0.009\left(W_{L}-7\right)
$$

For remolded soil of low sensitivity
D.

$$
C_{c}=0.40\left(e_{0}-0.25\right)
$$

For undisturbed soil of medium sensitivity $\mathrm{e}_{\mathrm{o}}=$ Intitial void ratio
E.

For remoulded soil of low sensitivity.
$C_{c}=1.15\left(\mathrm{e}_{0}-0.35\right)$
F.
$C_{c}=0.715 \mathrm{w}$ where, $\mathrm{w}=$ Water content
Over consolidation ratio
O.C.R. $=\frac{\text { Mcximum effective stress applied in the past }}{\text { Existing effective stress }}$
O.C.R > 1 For over consolidated soil.
O.C.R = $\mathbf{1}$ For normally consolidated soil.
O.C. $\mathbf{R}<1$ For under consolidated soil.

where, $u=$ Excess pore pressure.
$\frac{\partial u}{\partial t}=$ Rate of change of pore pressure
$C_{v}=$ Coefficient of consolidation
$\frac{\partial u}{\partial z}=$ Rate of change of pore pressure with depth.
Coefficient of volume compressibility $m_{v}=\frac{a_{v}}{1+e_{0}}$ where, $\mathrm{e}_{0}=$ Initial void ratio
$m_{v}=$ Coefficient of volume compressibility
Compression modulus
$E_{c}=\frac{1}{m_{v}}$ where, $\mathrm{E}_{\mathrm{c}}=$ Compression modulus.

Degree of consolidation

(i)
$\% U=\left(1-\frac{U}{U_{1}}\right) \times 100$
where,
$\% \mathrm{U}=\%$ degree of consolidation
$\mathrm{U}=$ Excess pore pressure at any stage.
$\mathrm{U}_{1}=\overline{\Delta \sigma}=$ Initial excess pore pressure
at $t=0, u=u \Rightarrow \% u=0 \%$
at $t=\propto, u=0 \Rightarrow \% u=100 \%$
(ii)

$$
\% u=\frac{e_{0}-e}{e_{0}-e_{f}} \times 100
$$

where,
$e_{f}=$ Void ratio at 100% consolidation.
i.e. of $t=\infty$
$\mathrm{e}=$ Void ratio at time 't'
$\mathrm{e}_{0}=$ Initial void ratio i.e., at $\mathrm{t}=0$
(iii)

$$
\% u=\frac{\Delta h}{\Delta H} \times 100
$$

where,
$\Delta H=$ Final total settlement at the end of completion of primary consolidation i.e., at $t=\infty$
$\Delta h=$ Settlement occurred at any time 't'.
Time factor
$T_{v}=C_{v} \cdot \frac{t}{d^{2}}$ where, $\mathrm{T}_{\mathrm{v}}=$ Time factor
$\mathrm{C}_{\mathrm{V}}=$ Coeff. of consolidation in $\mathrm{cm}^{2} / \mathrm{sec}$.
$d=$ Length of drainage path
$t=$ Time in 'sec'

For 2-way drainage
$d=H_{0}$ For one-way drainage.
where, $\mathrm{H}_{0}=$ Depth of soil sample.
Some cases
(i) $T_{v}=\frac{\pi}{4}(u)^{2} \ldots \quad$ if $\mathrm{u} \leq 60 \% \mathrm{~T}_{50}=0.196$
(ii) $T_{v}=-0.9332 \log _{10}(1-u)-0.0851 \ldots$ if $\mathrm{u}>60 \%$

Method to find ' $\mathrm{C}_{\mathrm{v}}{ }^{\prime}$
(i) Square Root of Time Fitting Method

$$
C_{v}=\frac{T_{90} \cdot d^{2}}{t_{90}}
$$

where,
$\mathrm{T}_{90}=$ Time factor at 90% consolidation
$\mathrm{t}_{90}=$ Time at 90% consolidation
$d=$ Length of drainage path.
(ii) Logarithm of Time Fitting Method

$$
C_{v}=\frac{T_{50} \cdot d^{2}}{t_{50}}
$$

where, $\mathrm{T}_{50}=$ Time factor at 50% consolidation
$\mathrm{t}_{50}=$ Time of 50% consolidation.
Compression Ratio
(i) Initial Compression Ratio
$r_{i}=\frac{R_{i}-R_{0}}{R_{i}-R_{f}}$
where, $\mathrm{R}_{\mathrm{i}}=$ Initial reading of dial gauge.
$\mathrm{R}_{0}=$ Reading of dial gauge at 0% consolidation.
$R_{f}=$ Final reading of dial gauge after secondary consolidation.
(ii) Primary Consolidation Ratio
$r_{s}=\frac{R_{0}-R_{100}}{R_{i}-R_{f}}$
where, $\mathrm{R}_{100}=$ Reading of dial gauge at 100% primary consolidation.
(iii) Secondary Consolidation Ratio
$r_{s}=\frac{R_{100}-R_{f}}{R_{i}-R_{f}} r_{i}+r_{p}+r_{s}=1$

Total Settlement

$S=S_{i}+S_{p}+S_{s}$ where, $S_{i}=$ Initial settlement
$\mathrm{S}_{\mathrm{p}}=$ Primary settlement
$\mathrm{S}_{\mathrm{s}}=$ Secondary settlement
(i) Initial Settlement

$$
S_{i}=\frac{H_{0}}{C_{s}} \cdot \log _{10} \frac{\overline{\sigma_{0}}+\overline{\Delta \sigma}}{\overline{\sigma_{0}}}
$$

For cohesionless soil.
where,

where, $\mathrm{C}_{\mathrm{r}}=$ Static one resistance in $\mathrm{kN} / \mathrm{m}^{2}$
$H_{0}=$ Depth of soil sample

$$
S_{i}=\frac{q \sqrt{A}\left(1-\mu^{2}\right)}{E_{s}}\left(I_{t}\right)
$$

For cohesive soil.
where, $I_{t}=$ Shape factor or influence factor
$A=$ Area.

(ii) Primary Settlement

$$
S_{P}=\Delta H=H_{0} \frac{\Delta e}{1+e_{0}}
$$

$$
\Delta H=H_{0} m_{v} \overline{\Delta \sigma}
$$

-

$$
\Delta H=\frac{C_{c} H_{0}}{1+e_{0}} \log _{10}\left(\frac{\overline{\sigma_{0}}+\overline{\Delta \sigma}}{\overline{\sigma_{0}}}\right)
$$

$$
S_{P}=S_{C_{1}}+S_{C_{2}} S_{C_{1}} \ll S_{C_{2}} \rightarrow S_{P} \sim S_{C_{2}}
$$

$S_{C_{1}}=$ Settlement for over consolidated stage
$S_{C_{2}}=$ Settlement for normally consolidation stage
$S_{P}=\frac{C_{r} H_{0}}{1+e_{0}} \log _{10}\left(\frac{\overline{\sigma_{1}}}{\overline{\sigma_{0}}}\right)+\frac{C_{c} H_{0}^{\prime}}{1+e_{0}} \log _{10}\left(\frac{\overline{\sigma_{2}}}{\overline{\sigma_{1}}}\right)$
(ii) Secondary Settlement

$$
S_{S}=\frac{C_{s} H_{0}}{1+e_{100}} \log _{10}\left(\frac{t_{2}}{t_{1}}\right)
$$

where, $H_{0}-H_{100}$
$\mathrm{H}_{100}=$ Thickness of soil after 100% primary consolidation.
$\mathrm{e}_{100}=$ Void ratio after 100% primary consolidation.
$t_{2}=$ Average time after t_{1} in which secondary consolidation is calculated

Shear Strength of Soil

Shear strength of a soil is equal to the maximum value of shear stress that can be mobilized within a soil mass without failure taking place.

The shear strength of a soil is a function of the stresses applied to it as well as the manner in which these stresses are applied. A knowledge of shear strength of soils is necessary to determine the bearing capacity of foundations, the lateral pressure exerted on retaining walls, and the stability of slopes.

Mohr Circle of Stresses

In soil testing, cylindrical samples are commonly used in which radial and axial stresses act on principal planes. The vertical plane is usually the minor principal plane whereas the horizontal plane is the major principal plane. The radial stress (s_{r}) is the minor principal stress (s_{3}), and the axial stress (s_{a}) is the major principal stress (s_{1}).

A graphical representation of stresses called the Mohr circle is obtained by plotting the principal stresses. The sign convention in the construction is to consider compressive stresses as positive and angles measured counterclockwise also positive.

Draw a line inclined at angle θ with the horizontal through the pole of the Mohr circle so as to intersect the circle. The coordinates of the point of intersection are the normal and shear stresses acting on the plane, which is inclined at angle θ within the soil sample.

- Normal stress

- Shear stress

$$
\tau_{\theta}=\frac{\left(\sigma_{1}-\sigma_{3}\right)}{2} \sin 2 \theta
$$

- The plane inclined at an angle of 45° to the horizontal has acting on it the
maximum shear stress equal to $\frac{\sigma_{1}-\sigma_{3}}{2}$, and the normal stress on this
plane is equal to $\frac{\sigma_{1}+\sigma_{3}}{2}$.
- The plane with the maximum ratio of shear stress to normal stress is inclined at an angle of $45^{0}+\frac{\alpha}{2}$ to the horizontal, where a is the slope of the line tangent to the Mohr circle and passing through the origin.

Mohr-Coulomb Failure Criterion

When the soil sample has failed, the shear stress on the failure plane defines the shear strength of the soil. Thus, it is necessary to identify the failure plane. Is it the plane on which the maximum shear stress acts, or is it the plane where the ratio of shear stres to normal stress is the maximum?

For the present, it can be assumed that a failure plane exists and it is possible to apply principal stresses and measure them in the laboratory by conducting a triaxial test. Then, the Mohr circle of stress at failure for the sample can be drawn using the known values of the principal stresses.

If data from several tests, carried out on different samples upto failure is available, a series of Mohr circles can be plotted. It is convenient to show only the upper half of the Mohr circle. A line tangential to the Mohr circles can be drawn, and is called the Mohr-Coulomb failure envelope.

If the stress condition for any other soil sample is represented by a Mohr circle that lies below the failure envelope, every plane within the sample experiences a shear stress which is smaller than the shear strength of the sample. Thus, the point of tangency of the envelope to the Mohr circle at failure gives a clue to the determination of the inclination of the failure plane. The orientation of the failure plane can be finally determined by the pole method.

Mohr-Coulomb failure criterion can be written as the equation for the line that represents the failure envelope. The general equation is
$\tau_{f}=c+\sigma_{f} \cdot \tan \phi$
Where,
shear stress on the failure plane
$c=$ apparent cohesion
σ_{f}
= normal stress on the failure plane
$f=$ angle of internal friction
The failure criterion can be expressed in terms of the relationship between the principal stresses. From the geometry of the Mohr circle,
$\sin \phi=\frac{R}{c \cdot \cot \phi+p}=\frac{\frac{\sigma_{1}-\sigma_{3}}{2}}{c \cdot \cot \phi+\frac{\sigma_{1}+\sigma_{3}}{2}}$
Rearranging,
$\sigma_{1}=\sigma_{3}\left(\frac{1+\sin \phi}{1-\sin \phi}\right)+2 c \sqrt{\frac{1+\sin \phi}{1-\sin \phi}}$
where $\frac{l+\sin \phi}{l-\sin \phi}=\tan ^{2}\left[\frac{\pi}{4}+\frac{\phi}{2}\right]$

Methods of Shear Strength Determination

1. Direct Shear Test

The test is carried out on a soil sample confined in a metal box of square crosssection which is split horizontally at mid-height. A small clearance is maintained between the two halves of the box. The soil is sheared along a predetermined plane by moving the top half of the box relative to the bottom half. The box is usually square in plan of size
$60 \mathrm{~mm} \times 60 \mathrm{~mm}$. A typical shear box is shown.

If the soil sample is fully or partially saturated, perforated metal plates and porous stones are placed below and above the sample to allow free drainage. If the sample is dry, solid metal plates are used. A load normal to the plane of shearing can be applied to the soil sample through the lid of the box.

Tests on sands and gravels can be performed quickly, and are usually performed dry as it is found that water does not significantly affect the drained strength. For clays, the rate of shearing must be chosen to prevent excess pore pressures building up.

As a vertical normal load is applied to the sample, shear stress is gradually applied horizontally, by causing the two halves of the box to move relative to each other. The shear load is measured together with the corresponding shear displacement. The change of thickness of the sample is also measured.

A number of samples of the soil are tested each under different vertical loads and the value of shear stress at failure is plotted against the normal stress for each test. Provided there is no excess pore water pressure in the soil, the total and effective stresses will be identical. From the stresses at failure, the failure envelope can be obtained.

The test has several advantages:

- It is easy to test sands and gravels.
- Large samples can be tested in large shear boxes, as small samples can give misleading results due to imperfections such as fractures and fissures, or may not be truly representative.
- Samples can be sheared along predetermined planes, when the shear strength along fissures or other selected planes are needed.

The disadvantages of the test include:

- The failure plane is always horizontal in the test, and this may not be the weakest plane in the sample. Failure of the soil occurs progressively from the edges towards the centre of the sample. There is no provision for measuring pore water pressure in the shear box and so it is not possible to determine effective stresses from undrained tests.
- The shear box apparatus cannot give reliable undrained strengths because it is impossible to prevent localised drainage away from the shear plane.

Triaxial test

- The triaxial test is carried out in a cell on a cylindrical soil sample having a length to diameter ratio of 2.
- The usual sizes are $76 \mathrm{~mm} \times 38 \mathrm{~mm}$ and $100 \mathrm{~mm} \times 50 \mathrm{~mm}$. Three principal stresses are applied to the soil sample, out of which two are applied water pressure inside the confining cell and are equal.
- The third principal stress is applied by a loading ram through the top of the cell and is different to the other two principal stresses.

A typical triaxial cell in 2D is shown as

The soil sample is placed inside a rubber sheath which is sealed to a top cap and bottom pedestal by rubber O-rings. For tests with pore pressure measurement, porous discs are placed at the bottom, and sometimes at the top of the specimen. Filter paper drains may be provided around the outside of the specimen in order to speed up the consolidation process. Pore pressure generated inside the specimen during testing can be measured by means of pressure transducers.

The triaxial compression test consists of two stages:

- First stage: In this, a soil sample is set in the triaxial cell and confining pressure is then applied.
Second stage: In this, additional axial stress (also called deviator stress) is applied which induces shear stresses in the sample. The axial stress is continuously increased until the sample fails.

During both the stages, the applied stresses, axial strain, and pore water pressure or change in sample volume can be measured.

Test Types

There are several test variations, and those used mostly in practice are:

- UU (unconsolidated undrained) test: In this, cell pressure is applied without allowing drainage. Then keeping cell pressure constant, deviator stress is increased to failure without drainage.
- CU (consolidated undrained) test: In this, drainage is allowed during cell pressure application. Then without allowing further drainage, deviator stress is increased keeping cell pressure constant.
- CD (consolidated drained) test: This is similar to CU test except that as deviator stress is increased, drainage is permitted. The rate of loading must be slow enough to ensure no excess pore water pressure develops.

In the UU test, if pore water pressure is measured, the test is designated by

$\overline{\mathrm{TJJ}}$

In the CU test, if pore water pressure is measured in the second stage, the test is symbolized as $\overline{\mathrm{CU}}$.

Significance of Triaxial Testing

The first stage simulates in the taboratory the in-situ condition that soil at different depths is subjected to different effective stresses. Consolidation will occur if the pore water pressure which develops upon application of confining pressure is allowed to dissipate. Otherwise the effective stress on the soil is the confining pressure (or total stress) minus the pore water pressure which exists in the soil.

During the shearing process, the soil sample experiences axial strain, and either volume change or development of pore water pressure occurs. The magnitude of shear stress acting on different planes in the soil sample is different. When at some strain the sample fails, this limiting shear stress on the failure plane is called the shear strength.

The triaxial test has many advantages over the direct shear test:

- The soil samples are subjected to uniform stresses and strains.
- Different combinations of confining and axial stresses can be applied.
- Drained and undrained tests can be carried out.
- Pore water pressures can be measured in undrained tests.
- The complete stress-strain behaviour can be determined.

Total Stress Parameters

UU Tests

All Mohr circles for UU test plotted in terms of total stresses have the same diameter.

The failure envelope is a horizontal straight line and hence $\phi_{U U}=0$
It can be represented by the equation:
$\tau_{f}=c_{V U V}=\frac{\sigma_{1}-\sigma_{3}}{2}$
CU \& CD Tests:

For tests involving drainage in the first stage, when Mohr circles are plotted in terms of total stresses, the diameter increases with the confining pressure. The resulting failure envelope is an inclined line with an intercept on the vertical axis.

It is also observed that $\mathrm{C}_{\mathrm{CU}}{ }^{1} \mathrm{C}_{\mathrm{CD}}$ and $\mathrm{f}_{\mathrm{CU}}{ }^{1} \mathrm{f}_{\mathrm{CD}}$
It can be stated that for identical soil samples tested under different triaxial conditions of UU, CU and CD tests, the failure envelope is not unique.

Effective Stress Parameters

If the same triaxial test results of $\mathbf{U U}, \mathbf{C U}$ and $\mathbf{C D}$ tests are plotted in terms of effective stresses taking into consideration the measured pore water pressures, it is observed that all the Mohr circles at failure are tangent to the same failure envelope, indicating that shear strength is a unique function of the effective stress on the failure plane.

This failure envelope is the shear strength envelope which may then be written as
$\tau_{f}=c^{\prime}+\sigma^{\prime} \cdot \tan \phi^{\prime}$
where $c^{\prime}=$ cohesion intercept in terms of effective stress $f^{\prime}=$ angle of shearing resistance in terms of effective stress

If σ_{n}^{\prime} is the effective stress acting on the rupture plane at failure, τ_{n} is the shear stress on the same plane and is therefore the shear strength.

The relationship between the effective stresses on the failure plane is

$$
\sigma_{1}^{\prime}=\sigma_{3}^{\prime}\left(\frac{1+\sin \phi}{1-\sin \phi}\right)+2 c^{\prime} \sqrt{\frac{4+\sin \phi}{1-\sin \phi}}
$$

Stress-Strain Behaviour of Sands

Sands are usually sheared under drained conditions as they have relatively higher permeability. This behaviour can be investigated in direct shear or triaxial tests. The two most important parameters governing their behaviour are the relative density ($\left(I_{D}\right)$ and the magnitude of the effective stress (σ). The relative density is usually defined in percentage as
$I_{D}=\frac{e_{\text {max }}-e}{e_{\text {max }}-e_{\text {min }}} \times 100$
where $\mathbf{e}_{\text {max }}$ and $\mathbf{e}_{\text {min }}$ are the maximum and minimum void ratios that can be determined from standard tests in the laboratory, and \mathbf{e} is the current void ratio. This expression can be re-written in terms of dry density as
$I_{D}=\left(\frac{\gamma_{d}-\gamma_{d \min }}{\gamma_{d \max }-\gamma_{d \min }}\right) x \frac{\gamma_{d \max }}{\gamma_{d}} \times 100$
where $\mathbf{g}_{d m a x}$ and $\mathbf{g}_{d \min }$ are the maximum and minimum dry densities, and g_{d} is the current dry density. Sand is generally referred to as dense if $I_{D}>65 \%$ and loose if < 35\%.

The influence of relative density on the behaviour of saturated sand can be seen from the plots of CD tests performed at the same effective confining
stress. There would be no induced pore water pressures existing in the samples.

For the dense sand sample, the deviator stress reaches a peak at a low value of axial strain and then drops down, whereas for the loose sand sample, the deviator stress builds up gradually with axial strain. The behaviour of the medium sample is in between.

The following observations can be made:

- All samples approach the same ultimate conditions of shear stress and void ratio, irrespective of the initial density. The denser sample attains higher peak angle of shearing resistance in between.
- Initially dense samples expand or dilate when sheared, and initially loose samples compress.

Earth Pressure Theories

Rankine's Earth Pressure Theory

The Rankine's theory assumes that there is no wall friction $(\delta=0)$, the ground and failure surfaces are straight planes, and that the resultant force acts parallel to the backfill slope.

In case of retaining structures, the earth retained may be filled up earth or natural soil. These backfill materials mayexert certain lateral pressure on the wall. If the wall is rigid and does not move with the
pressure exerted on the wall, the soil behind the wall will be in a state of elastic equilibrium. Consider the prismatic element E in the backfill at depth, z , as shown in Fig.

If we consider the backfill is homogenous then both σ_{s} axd $\sigma_{\text {gheneases rapidly }}$ with depth z. In that case the ratio of vertical and lateral pressures remain constant with reppect
to depth, that is $\sigma_{3} / \sigma_{y}=\sigma_{3} / y_{2}=$ constant $=K_{2}$, where K, the coefficient of earth pressure for at rest condition.

Earth Pressure at Rest

The at-rest earth pressure coefficien (K)s applicable for determining the active pressure in clays for strutted systems. Because of the cohasve property of clay there will be no lateral pressure exerted in the atrest condition up to some hefott of the time the excavation is made. However, with time, creep and swelling of the clay will occur and lateral pressure will develop. This coefficient takes the characteristics of clay into account and will always give positive lateral pressure.

The lateral earth pressure acting on the wall of height H may be expressed as $\sigma_{b}=\mathrm{F}, \gamma H$.
The total pressure for the soil at rest condition, $P_{p}=0.5 \mathrm{~K}, y H^{2}$.
The value of K depends on the relative density of sand and the process by which the deposit was formed. If this process doesnot involve artificial tarmping the value of $R_{\text {e }}$ ranges from 0.4 for loose sand to 0.6 for dense sand. Tamping or the layers may increase it upto 0.8 .

From elastic theory, $K_{e}=\mu I(1-\mu)$ - , where μ is the poisson's ratio.
Accorting to Jaky (1944), a good approximation of K , is given by, $K_{e}=1-\sin$ p.

Rankine's Earth Pressure Against A Vertical Section With The Surface Horizontal With Cohesionless Backfill

Active earth pressure:

Rankine's active earth pressure in the cohesionless soil

The lateral pressure acting against a smooth wall $A B$ is due to Mass of sol $A B C$ above the rupture line $A C$ which makes an angle of $\left(45^{\circ}+\phi / 2\right)$ with the horizontal. The lateral pressure distribution on the wall $A B$ of height H increases in same proportion to depth.
The pressure acts normal to the wall AB.
The lateral active earth pressure at A is $P_{a}=K_{A} y$ 底, which acts at a height $H / 3$ above the base of the wall. The total pressure on $A B$ is therefore calculated as follows:

$$
P_{a}=\int_{1}^{R} P_{x} d z=\int_{8}^{E} K_{A} y z a z=05 X_{2} y H^{2} \text {, where } K_{A}=\tan ^{2}\left(45^{\circ}+\phi / 2\right)
$$

Passive earth pressure:

Rankine's passive earth pressure in cohesionless soil

If the wall $A B$ is pushed into the mass to such an extent as to impart uniform compression throughout the mass, the soil wedge ABC in fig. will be in Rankine's Passive State of plastic equilibrium. The inner rupture plane $A C$ makes an angle $\left(45^{\circ}+\$ / 2\right)$ with the vertical $A B$. The pressure distribution on the wall is linear as strown.

The lateral passive earth pressure at A is $P_{\gamma}=K, \gamma H$. which acts at a height $\mathrm{H} / 3$ above the base of the wall. The total pressure on $A B$ is therefore

$$
P_{p}=\int_{0}^{B} P_{2} d z=\int_{z}^{R} K_{p} y z d z=0.5 K, \gamma H^{2}, \text { where } K_{p}=\tan ^{2}\left(45^{\circ}+\phi / 2\right)
$$

Rankine's active earth pressure with a sloping cohesionless backfill surface

As in the case of horizontal backfill, active case of plastic equilibrium can be developed in the backfill by rotating the wall about A away from the backfill. Let $A C$ be the plane of rupture and the soil in the wedge $A B C$ is in the state of plastic equilibrium.

The pressure distribution on the wal is shown in Fig. The active earth pressure at depth H is $P_{c}=K_{A} y / H$ which acts parallel to the surface. The total pressure per unit length of the wall is $P_{a}=0.5 K_{A} \gamma H^{2}$ which acts at a height of H/3 from the pase of the wall and parallel to the sloping surface of the backfill. In case of active pressure,

$$
K_{A}=\cos \beta\left(\cos \beta-\sqrt{\left(\cos ^{2} \beta-\cos ^{2} \phi\right)}\right) /\left(\cos \beta+\sqrt{\left(\cos ^{2} \beta-\cos ^{2} \phi\right)}\right)
$$

In case or passume pressure,
$K, \operatorname{Kos} \delta\left(\cos \beta+\sqrt{\left(\cos ^{2} \beta-\cos ^{2} \phi\right)}\right) /\left(\cos \beta-\sqrt{\left(\cos ^{2} \beta-\cos ^{2} \phi\right)}\right)$

Rankine's active earth pressures of cohesive soils with horizontal backfill on smooth vertical walls

In case of cohesionless soils, the active earth pressure at any depth is given by
$P_{a}=K_{A} y z$ In case of cohesive solis the cohesion component is included and the expression becomes $P_{4}=K_{A} y z-2 c \sqrt{K_{A}}$.

When $P_{a}=0, z=z_{e}=\left(2 c \sqrt{K_{A}}\right) / y$.
This depth is known as the depth of tensile crack. Assuming that the compressive force balances the tensile force $(-)$, the total depth where tensile and compressive force neutralizes each other is $2 z_{0}$. This st the depth upto which a soil can stand without any support and is sometimes referred as the depth ol vertical crack or critical depth $\left(H_{4}\right)\left(H_{6}=4 c \sqrt{K_{A}}\right) / \gamma$.

However Terzaghi from field analysis obtained that $\left(H_{c}=4 c \sqrt{K_{A}}\right) / y-z_{e}$, where,
$z_{f} * H_{f} / 2$ and is not more than that
The Ranione formula for passive pressure can only be used correcth when the embankment slope angle equals zero or is negative. If a large wall friction value can develop, the gondine Theory is not correct and will give less conservative resuits. Rankine's theory is not intended to be used for determining earth pressures directiy against a wall (friction angle does not appear in equations above). The theory is intended to be used for determining earth pressures on a vertical plane within a manse of sod

Coulomb's Wedge Theory

Coulomb (1776) developed a method for the determmation of the earth pressure in which he considered the equilibrium of the sliding wedge which is formed when the movernent of the retaining wall takes place. The sliding wedge is tom off from the reat of the batcfill due to the movement of the wall. In the Active Earth Pressure case, the sliding wedge moves downwands 5 outwards on a slip surface relative to the intact backfill If in the case of Passive Earth prescore, the sliding wedge moves upward and inwards. The pressure on the wall is, in fact, a force of reaction which thes to exert to keep the sliding wedge in equilitrium. The lateral pressure on the wall is equal and opposite to the reactive force exerted by the wail in order to keep the sllefing wedge in equilibrium. The analysis s a type of limiting equilibrium method.
The following assumptions ark marde

- The backili is dry, cohesion less, homogeneous, isotropic and ideally plastic material, elastically undeformable but breakable.
- The slip surface is plane sefface which passes through the heel of the wall.
- The wall surface a roush. The resultant earth pressure on the wall is incined at an angle δ to the normal to the wall, where ses the angle of the friction between the wall and bacicit.
* The sliding wectge itself acts as a rigid body is the value of the earth pressure is obtained by considering the limiting equ ibrum of the sliding wedge as a whole.
- The poritist and direction of the resultant earth pressure are known. The resultant pressure acts on the back of the wall at one third height of the wall from the base and is inclined at an angle δ to the normal to the
buck tors angle is called the angle of wall friction.
* The back of the wall is rough a relative movement of the wall and the soil on the back takes place which develops frictional forces that influence the direction of the resultant pressure.

Some Graphical solutions for lateral Earth Pressure are

- Culman's solution
- The trial wedge method
- The logarithmic spiral

Shallow Foundations

Shallow Foundation \& Bearing Capacity

Bearing Capacity

It is the load carrying capacity of the soil.

- Ultimate bearing capacity or Gross bearing capacity (qu_{u})

It is the least gross pressure which will cause shear failure of the supporting soil immediately below the footing.

- Net ultimate bearing capacity (qun):

It is the net pressure that can be applied to the footing by external loads that will just initiate failure in the underlying soil. It is equal to ultimate bearing capacity minus the stress due to the weight of the footing and any soil or surcharge directly above it. Assuming the density of the footing (concrete) and soil (\mathbf{Y}) are close enough to be considered equal, then

$$
a_{n u}=q_{u}-\gamma \square_{4}
$$

Where, D_{f} is the depth of footing

Safe bearing capacity:

It is the bearing capacity after applying the factor of safety (FS). These are of two types,

Safe net bearing capacity ($\mathrm{qns}_{\mathrm{n}}$):

It is the net soil pressure which can be safety applied to the soil considering only shear failure. It is given by,

$$
q_{s s}=\frac{q_{m p}}{F S}
$$

Safe gross bearing capacity (q_{s}):

It is the maximum gross pressure which the soil can carry safely without shear failure. It is given by,

$$
q_{s}=q_{n s t}+\gamma D_{f}
$$

Allowable Bearing Pressure:

It is the maximum soil pressure without any shear failure or settlement failure

$$
q_{s}=q_{n s}+\bar{\sigma}
$$

where, $\mathrm{q}_{\mathrm{s}}=$ Safe bearing capacity.
Method to determine bearing capacity
(i) Rankines Method (\varnothing-soil)

where, N_{c} and N_{q} are bearing capacity factors.
For pure clays $\rightarrow C=4, q=1$
(iii) Fellinious Method: (C-soil)

- The failure is assumed to take place by slip and the consequent heaving of a mass of soil is on one side.
$q_{u t}=\frac{W \cdot I_{r}+C R}{b \cdot I_{0}} q_{u t t}=5.5 C$
- Location of Critical circle

(iv) Prandtl Method: (C - \emptyset)

For strip footing
$q_{u}=C N_{c}+\gamma D_{f} N_{q}+\frac{1}{2} \gamma B^{\prime} N$
For C-soil
$N_{c}=5.14, N_{d}=1, N_{\gamma}=0$
(v) Terzaghi Method (C - \emptyset)

Assumptions

S - Strip footing, S - Shallow foundation, G - General shear failure, H Horizontal ground, R - Rough base

For strip footing

$q_{u}=C N_{c}+\gamma D_{f} N_{q}+\frac{1}{2} \gamma B N_{\gamma}$

For square footing

$q_{u}=1.3 C N_{c}+\gamma D_{f} N_{q}+0.4 \gamma B N_{\gamma}$

For rectangular footing

$$
\mathrm{q}_{u}=\left(1+0.3 \frac{B}{L}\right) C N_{C}+
$$

$$
\gamma D_{f} N_{q}+\frac{1}{2}\left(1-\frac{0.2 B}{L}\right) \gamma B N_{\gamma}
$$

For circular footing

$$
\hat{q}_{u}=1.3 C N_{c}+\gamma D_{f} N_{q}+0.3 \gamma D N_{\gamma}
$$

where,
D = Dia of circular footing
$\mathrm{CN}_{\mathrm{c}} \rightarrow$ Contribution due to constant component of shear strength of soil.
$\gamma D_{f} N_{q} \rightarrow$ Contribution due to surcharge above the footing

$$
\frac{1}{2} \gamma B N_{\gamma}
$$

\rightarrow Contribution due to bearing capacity due to self weight of soil.

Bearing capacity factors

$$
N_{q}=N \phi \cdot \theta^{\pi \tan \phi}
$$

where, ${ }^{N_{\phi}}=$ influence factor

$$
\begin{aligned}
& N_{\phi}=\tan ^{2}\left(45^{\circ}+\frac{\phi}{2}\right) \\
& N_{\gamma}=1.8 \tan \phi\left(N_{q}-1\right) \\
& N_{C}=\cot \phi\left(N_{q}-1\right)
\end{aligned}
$$

For C-soil:

$\mathrm{N}_{\mathrm{C}}=5.7, \mathrm{~N}_{\mathrm{q}}=1, \mathrm{~N}_{\mathrm{Y}}=0$
(vi) Skemptons Method (c-soil)

This method gives net ultimate value of bearing capacity.
Applicable for purely cohesive soils only.

For strip footing.
$N_{C}=5 t o 7.5$
For circular and square footing.

JK Chrome

JK Chrome | Employment Portal

Rated No. 1 Job Application of India

Sarkari Naukri
Private Jobs
Employment News
Study Material
Notifications

NOTIFICATIONS

JK Chrome

jk chrome
Contains ads

Install

About this app
JK Chrome updates it's users with latest news \& job updates from J\&K.

News \& Magazines

Rate this app
Tell others what you think

GET IT ON
Google play
JK Chrome

$$
N_{C}=6 t o 9.0
$$

Values of N_{c}

$$
\frac{D_{f}}{B}=0 i . e .
$$

- at the surface.

Then $\mathrm{N}_{\mathrm{C}}=5$ For strip footing
$\mathrm{N}_{\mathrm{C}}=$ 6.0 For square and circular footing. where $D_{f}=$ Depth of foundation.

- If

$$
0 \leq \frac{D_{f}}{B} \leq 2.5
$$

$$
N_{C}=5\left[1+0.2 \frac{D_{f}}{B}\right]
$$

for strip footing

$$
\begin{aligned}
& \text { for strip footing } \\
& N_{C}=6\left[1+0.2 \frac{D_{f}}{B}\right],
\end{aligned}
$$

For square and circular footing.
$B=D$ in case of circular footing.

$$
N_{C}=5\left[1+0.2 \frac{B}{L}\right]\left[1+0.2 \frac{D_{f}}{B}\right]
$$

for rectangular footing

- if

$$
\frac{D_{f}}{B} \leq 2.5
$$

$\mathrm{N}_{\mathrm{C}}=7.5$
for strip footing
$N_{C}=9.0$ for circular, square and rectangular footing.

(viii) IS code:

Effect of Water Table on Bearing Capacity of Soil
$q_{u}=C N_{c}+\gamma D_{f} N_{q} R_{q}^{*}+\frac{1}{2} \gamma B N_{\gamma} R_{q}^{*}$

where ${ }^{R_{q}^{*}}$ and R_{f}^{*} are water table correction factor.

$$
R_{q}^{*}=\frac{1}{2}\left[1+\frac{z_{q}}{D_{f}}\right] R_{\gamma}^{*}=\frac{1}{2}\left[1+\frac{z_{\gamma}}{B}\right]
$$

when $0 \leq z_{q} \leq D_{f}$ when $0 \leq z_{\gamma} \leq B$.
If $z_{\gamma}>B$ they $R_{\gamma}^{*}=1$

If $z_{\gamma} \leq 0$ they
If water table rise to G.L
$R_{q}^{*}=\frac{1}{2}$ and $^{*} R_{\gamma}^{*}=\frac{1}{2}$

Plate Load Test

1. Significant only for cohesionless.
2. Short duration test hence only results in immediate settlement.
(i) $\frac{q_{u f}}{q_{u p}}=\frac{B_{f}}{B_{p}}$
(ii) $q_{u f}=q_{u p}$
..for $\varnothing=$ soil ... for C-soil
If plate load test carried at foundation level then

$$
S_{\text {fcorrected }}=S_{f} \times\left[\frac{1}{1+\frac{D_{2}}{B_{f}}}\right]^{0.5}
$$

(iii)

$$
\frac{S_{f}}{S_{p}}=\left[\frac{B_{f}\left(B_{p}+0.3\right)}{B_{p}\left(B_{f}+0.3\right)}\right]^{2}
$$

(iv) $\frac{S_{f}}{S_{p}}=\frac{B_{f}}{B_{p}}$
... for dense sand.
(v)

... for silts.
where,
$q_{\mathrm{uf}}=$ Ultimate bearing capacity of foundation
$\mathrm{q}_{\mathrm{up}}=$ Ultimate bearing capacity of plate
$S_{f}=$ Settlement of foundations
$S_{p}=$ Settlement of plate
$B_{f}=$ Width of foundation in m
$\mathrm{B}_{\mathrm{p}}=$ Width of plate in m

Housels Approach

$Q_{P}=m A_{p}+n P_{p}$
$Q_{f}=m A_{f}+n P_{f}$
where, $Q_{p}=$ Allowable load on plate m and n are constant
$\mathrm{P}=$ Perimeter $\mathrm{A}_{\mathrm{p}}=$ Area of plate
$A_{f}=$ Area of foundation
Standard Penetration Test
Significant for Granular Soils
(i)

$$
N_{1}=N_{0} \frac{350}{(\bar{\sigma}+70)}
$$

where, $\mathrm{N}_{1}=$ Overburden pressure correction
$\mathrm{N}_{0}=$ Observed value of S.R.T.number.
$=$ Effective overburden pressure at the level of test in $\mathrm{kM} / \mathrm{m}^{2}$.
(ii) For Saturated σ fine sand and silt, when $\mathrm{N}_{1}>15$

where, $\mathrm{N}_{2}=$ Dilatancy correction or water table correction.
$N_{q}+N_{\gamma}$ related to N value using peck Henson curve or (code method)

- Teng's formula relate N value with reading capacity of granular soil.

Pecks Equation

$$
\begin{aligned}
& q_{\text {a net }}=0.44 N S=C_{w} k N / m^{2} \\
& C_{w}=0.5\left(1+\frac{D_{w}}{D_{f}+B}\right)
\end{aligned}
$$

$D_{w}=$ depth of water table below G.L
$D_{f}=$ Depth of foundation
$B=$ Width of foundation
$\mathrm{N}=$ Avg. corrected S.P.T. no.
$S=$ Permissible settlement of foundation
$\mathrm{C}_{\mathrm{w}}=$ Water table correction factor
$q_{\text {a net }}=$ Net allowable bearing pressure.

Teng's Equations

$q_{n s}=1.4(N-3)\left(\frac{B+0.3}{2 B}\right)^{2} s e_{y} C h N T / m^{2}$
$C_{W}=0.5\left(1+\frac{D_{w}}{B}\right)$
$C_{D}=\left(1+\frac{D_{f}}{B}\right)$
$\mathrm{C}_{\mathrm{w}}=$ Water table correction factor
$D_{w}=$ Depth of water table below foundation level
$B=$ Width of foundation
$\mathrm{C}_{\mathrm{d}}=$ Depth correction factor
$\mathrm{S}=$ Permissible settlement in 'mm'.

I.S Code Method

$q_{n s}=1.38(N-3)\left(\frac{B+0.3}{2 B}\right)^{2} S C_{w}$
$\mathrm{q}_{\mathrm{ns}}=$ Net safe bearing pressure in $\mathrm{kN} / \mathrm{m}^{2}$
$B=$ Width in meter.

S = Settlement in 'mm'.
I.S. Code Formula for Raft:
$q_{n s}=0.88 N S C_{w}$
\mathbf{C}_{w} : Same as of peck Henson.

Meyer-Hoffs Equation

$q_{n s}=0.49 N S C_{w} C_{d}$
where, $q_{n s}=$ Net safe bearing capacity in $\mathrm{kN} / \mathrm{m}^{2}$.
$B<1.2$ m
$C_{d}=\left(1+\frac{D_{f}}{B}\right) \leq 2 C_{w}=\frac{1}{2}\left(1+\frac{D_{w}}{B}\right)$
$q_{n s}=0.32 N\left(\frac{B+0.3}{2 B}\right)^{2} \cdot S \cdot C_{d} \cdot C_{w}$
$\mathrm{B} \geq 1.2 \mathrm{~m}$ (where q_{ns} is in $\mathrm{kN} / \mathrm{m}^{2}$.
Cone Penetrations Test
(i)

$$
C=1.5\left[\frac{q_{c}}{\overline{\sigma_{0}}}\right]
$$

where, $=$ Static cone resistance in $\mathrm{kg} / \mathrm{cm}^{2}$
c = Compressibility coefficient
$\overline{\sigma_{0}}=$ Initial effective over burden pressure in $\mathrm{kg} / \mathrm{cm}^{2}$.
(ii) $S=2.3 \frac{H_{0}}{C} \log _{10}\left[\frac{\overline{\sigma_{0}}+\overline{\Delta \sigma}}{\overline{\sigma_{0}}}\right]$
where, 'S' = Settlement.
(iii) $q_{n s}=3.6 q_{s} R_{w} \quad$ B $>1.2 \mathrm{~m}$.
where, $q_{n s}=$ Net safe bearing pressure in $\mathrm{kN} / \mathrm{m}^{2}$.
(iv) $q_{n s}=2.7 q_{c} \cdot R_{w} \quad \mathrm{~B}<1.2 \mathrm{~m}$.
where, $\mathrm{R}_{\mathrm{w}}=$ Water table correction factor.
Deep Foundations
(i) $Q_{u p}=Q_{e b}+Q_{s f}$
(ii) $Q_{u p}=q_{b} A_{b}+q_{s} A_{s}$
where,
Qup = Ultimate load on pile
$\mathrm{Q}_{\mathrm{eb}}=$ End bearing capacity
$Q_{\text {sf }}=$ Skin friction
$\mathrm{q}_{\mathrm{b}}=$ End bearing resistance of unit area.
$\mathrm{q}_{\mathrm{s}}=$ Skin friction resistance of unit area.
$A_{b}=$ Braking area
$\mathrm{A}_{\mathrm{s}}=$ Surface area

$\bar{C}=$ Average Cohesion over depth of pile.
(v)

where, $F_{s}=$ Factor of safety.
(vi)
$Q_{s q f e}=\frac{Q_{s b}}{F_{1}}+\frac{Q_{f f}}{F_{2}}$

$$
\begin{aligned}
& \mathrm{F}_{1}=3 \text { and } \mathrm{F}_{2}=2 \\
& \simeq F_{1}=F_{2}=2.5
\end{aligned}
$$

(vii) For Pure Clays $Q_{u p}=9 C \cdot A_{b}+\alpha \bar{c} A_{s}$

B. Dynamic Approach

Dynamic methods are suitable for dense cohesionless soil only.

(i) Engineering News Records Formula

(a) $Q_{u p}=\frac{W H}{S+C}$
(b) $Q_{Q}=\frac{Q_{\Psi}}{6}=\frac{W H}{(S+C)}$
where,
Qup = Ultimate load on pile
$Q_{\text {ap }}=$ Allowable load on pile
$\mathrm{W}=$ Weight of hammer in kg .
$\mathrm{H}=$ Height of fall of hammer in cm .
S = Final set (Average penetration of pile per blow of hammer for last five blows in cm)

C = Constant
$=2.5 \mathrm{~cm} \rightarrow$ for drop hammer
$=0.25 \mathrm{~cm} \rightarrow$ for steam hammer (single acting or double acting)
(c) for drop hammer
$Q_{\varphi}=\frac{W H}{6(S+2.5)}$
(d) For single Acting Stream Hammer

$$
Q_{Q p}=\frac{W H}{6(S+02.5)}
$$

(e) For Double Acting Stream Hammer
$Q_{\Phi}=\frac{W+a p) H}{6(S+02.5)}$
where $\mathrm{P}=$ Stream pressure and $\mathrm{a}=$ Area of hammer on which pressure acts.

(ii) Hiley Formula (I.S. Formula)

$Q_{\varphi}=\frac{\eta_{k} \cdot \eta_{b} \cdot W H}{S+\frac{C}{2}} Q_{Q p}=\frac{Q_{\varphi}}{F_{s}}$
where, $\mathrm{F}_{\mathrm{s}}=$ Factor of safety $=3$
$\eta_{h}=$ Efficiency of hammer
$\eta_{b}=$ Efficiency of blow.
$\eta_{\mathrm{h}}=0.75$ to 0.85 for single acting steam hammer
$\eta_{\mathrm{h}}=0.75$ to 0.80 for double acting steam hammer
$\eta_{h}=1$ for drophammer.
$\eta_{b}=\frac{\text { Ener g of hammer after impact }}{\text { Energ of hammer just before impact }}$
$\eta=\frac{W+e^{2} P}{m+P}$ when $w>e . p$
$\eta_{b}=\left(\frac{W+e^{2} P}{W+P}\right)-\left(\frac{W-e^{2} P}{W+P}\right)^{2} .$. when $w<e . p$
where, $\mathrm{w}=$ Weight of hammer in kg .
$p=$ Weight of pile + pile cap
e=Coefficient of restitutions
$=0.25$ for wooden pile and cast iron hammer
$=0.4$ for concrete pile and cast iron hammer
$=0.55$ for steel piles and cast iron hammer
$S=$ Final set or penetrations per blow
$C=$ Total elastic compression of pile, pile cap and soil
$H=$ Height of fall of hammer.
C. Field Method
(i) Use of Standard Penetrations Data
$Q_{u p}=400 \mathrm{NAb}+2 \overline{\mathrm{~N}} A_{s}$
where, $\mathrm{N}=$ Corrected S.P.T Number
$\bar{N}=$ Average corrected S.P.T number forentire pile length
$Q_{Q p}=\frac{Q_{u p}}{F_{s}}$
$\mathrm{F}_{\mathrm{s}}=$ Factor of safety
$=4 \rightarrow$ For driven pile
$=2.5 \rightarrow$ for bored pile.
$q_{b}=400 \mathrm{~N}$ and $q_{s}=\bar{N}$
(ii) Cone penetration test

$$
Q_{u p}=q_{c} A_{b}+\frac{\bar{q}_{c}}{2} A_{s}
$$

where, $\mathrm{q}_{\mathrm{c}}=$ static cone resistance of the base of pile in $\mathrm{kg} / \mathrm{cm}^{2}$
$\mathrm{q}_{\mathrm{c}}=$ average cone resistance over depth of pile in $\mathrm{kg} / \mathrm{cm}^{2}$

$$
A_{b}=\frac{1}{4}\left(b_{u}\right)^{2} \quad \text { Area of bulb }(\mathrm{m})^{2}
$$

Under-Reamed Pile

An 'under-reamed' pile is one with an enlarged base or a bulb; the bulb is called 'under-ream'.

Under-reamed piles are cast-in-situ piles, which may be installed both in sandy and in clayey soils. The ratio of bulb size to the pile shaft size may be 2 to 3 ; usually a value of 2.5 is used.

$$
\begin{aligned}
& A_{s_{1}}=\pi b L_{1} q_{\Omega_{1}}=\alpha C \alpha<1 . \\
& A_{s_{2}}=\pi b u L_{2} q_{s}=\alpha 0 \alpha=1 .
\end{aligned}
$$

where, $b_{u}=$ dia of bulb, Spacing $=1.5 b_{u}$.

$$
Q_{u p}=q_{b} A_{b}+q_{s_{1}} A_{s_{1}}+q_{s_{2}} A_{s_{2}}
$$

Negative Skin Friction

(i) For Cohesive sol

$Q_{n f}=$ Perimeter. $L_{1} a C$ for Cohesive soil.
where, $Q_{n f}=$ Total negative skin frictions

$$
F_{s}=\frac{Q_{u p}-Q_{n f}}{\text { Applied load }}
$$

where, $F_{s}=$ Factor of safety.
(ii) For cohesionless soils
$Q_{n f}=P x$ force per unit surface length of pile
$=P \frac{1}{2} K \gamma D_{n}^{2} \cdot \tan \delta$
$Q_{\text {gf }} \frac{1}{2} P D_{n}^{2} K \cdot \tan \delta \cdot \gamma$
(friction force $=\mu \mathrm{H}$)

Where $\mathrm{y}=$ unit weight of soil.
$\mathrm{K}=$ Earth pressure coefficient $\left(\mathrm{K}_{\mathrm{a}}<\mathrm{K}<\mathrm{K}_{\mathrm{p}}\right)$
$\delta=$ Angle of wall friction. $(\varphi / 2<\delta<\varphi)$

Group Action of Pile

The ultimate load carrying capacity of the pile group is finally chosen as the smaller of the
(i) Ultimate load carrying capacity of n pile ($n Q_{u p}$)
and (ii) Ultimate load carrying capacity of the single large equivalent (block) pile (Qug).

To determine design load or allowable load, apply a suitable factor of safety.

(i) Group Efficiency $\left(\boldsymbol{\eta}_{g}\right)$
$n_{g}=\frac{Q_{u g}}{n \cdot Q_{u p}}$
$Q_{u g}=$ Ultimate load capacity of pile group
$Q_{u p}=$ Ultimate load on single pile
For sandy soil $\rightarrow \eta_{g}>1$
For clay soil $\rightarrow \eta_{g}<1$ and $\eta_{g}>1$
Minimum number of pile for group $=3$.
$Q_{u g}=q_{b} A_{b}+q_{s} A_{s}$
where $q_{b}=9 C$ for clays
$A_{b}=B^{2} q_{s}=\bar{C} A_{s}=4 B \cdot L$

- For Square Group

Size of group, $B=(n-1) S+D$
where, η = Total number of pile if size of group is $\mathrm{x} . \mathrm{x}$
They $\eta=x^{2}$

- $Q_{u g}=\eta \cdot Q_{u p}$
$Q_{u g}=\frac{Q_{u g}}{F O S}$
where, $Q_{u g}=$ Allowable load on pile group.

$$
S_{r}=\frac{S_{g}}{S_{i}}
$$

where, $\mathrm{S}_{\mathrm{r}}=$ Group settlement ratio
$\mathrm{S}_{\mathrm{g}}=$ Settlement of pile group
$S_{i}=$ Settlement of individual pile.

(ii) When Piles are Embended on a Uniform Clay
$S_{g}=\Delta H=\frac{C_{c} H_{0}}{1+e_{0}} \log _{10} \frac{\overline{\sigma_{0}}+\overline{\Delta \sigma}}{\overline{\sigma_{0}}}$ and $\overline{\sigma_{0}}=\frac{Q}{(B+z)^{2}}$

(iii) In case of Sand
$S_{r}=\frac{S_{g}}{S_{i}}=\left(\frac{4 B+2.7}{B+3.6}\right)^{2}$ where, B = Size of pile group in meter.

JK Chrome

JK Chrome | Employment Portal

Rated No. 1 Job Application of India

Sarkari Naukri
Private Jobs
Employment News
Study Material
Notifications

NOTIFICATIONS

JK Chrome

jk chrome
Contains ads

Install

About this app
JK Chrome updates it's users with latest news \& job updates from J\&K.

News \& Magazines

Rate this app
Tell others what you think

GET IT ON
Google play
JK Chrome

