

JK Chrome | Employment Portal

Rated No.1 Job Application of India

Sarkari Naukri Private Jobs **Employment News** Study Material **Notifications**

MATERIAL

JK Chrome

jk chrome Contains ads

www.jkchrome.com | Email : contact@jkchrome.com

Simplification

Rule-(I) Replace 'of' by 'Multiplication' & '/' by 'Division'.

Explanation: Whenever we find 'of' in a simplification problem, we can replace that by 'multiplication(*)'. Similarly '/' can be replaced by '÷'.

Example: Find 1/4 of 20

Solution: $(\frac{1}{4}) \times 20 = 20 \div 4 = 5$

Rule-(II) Always keep in mind the "BODMAS" rule. These operations have priorities in the same order as mentioned.

Explanation: Whenever we have more than one operation in the given calculation, we have to do the operations according to the priority specified by 'BODMAS'

- B-Bracket
- O-Of (means multiplication)
- D-Division
- M-Multiplication
- A-Addition
- S-Subtraction

Example: Simplify: (2+3)*30

Solution: In this question, we have two things-Bracket & Multiplication. According to the BODMAS rule, we have to solve bracket first and not multiplication. So now coming to bracket, we have only one operation-Addition, so we will do addition.

$$(2+3)*30 = 5*30$$

Now we have only one operation to do - Multiplication

Example: Simplify: (2+5) of 80

Solution: In this question, we have three things – bracket, addition & of. Replacing 'of' by 'multiplication'.

$$(2+5)$$
 of $30 = (2+5)*80$

Now we have three things – bracket, addition & Multiplication. According to the BODMAS rule, we have to solve bracket first and not multiplication. So now coming to bracket, we have only one operation-Addition, we will do addition.

$$(2+5)*80 = 7*80$$

Now we will do multiplication.

$$7*80 = 560$$

Rule-(III) Multiplication & Division have the same priority(Do that operation first which is on left)

Explanation: Though division has more priority than multiplication according to 'BODMAS' but we can perform any of the two operations first if multiplication is on left.

Example: 8*30/15

$$8*30 \div 15$$

Solution: In this question, we have two things – Multiplication & Division. Multiplication is on left So we can perform that first.

Doing Multiplication first:

$$240 \div 15$$

16

Doing division first:

8*2

16

Rule-(IV) Addition & Subtraction have the same priority.

Explanation: Though addition has more priority than division according to 'BODMAS' but we can perform any of the two operations first.

Example: 30+40-15

Solution: In this question, we have two things – Addition & Subtraction. So we can perform any operation first as they have same priority.

Doing Addition first:

$$70 - 15$$

55

Doing Subtraction first:

$$30 + 25$$

55

Rule-(V) Don't hesitate in rounding the numbers to nearest integers.

Explanation: Most of the times the numbers are given in such a way that you can round them quickly and get the answer (Rounding should be done or not, It can be realised by looking at the given options).

Example: (324.5*15)/(5.01*24.98)

Solution: (325*15)/(5*25)

=13*3

=39

Some previous year questions asked in banking exams from simplification

Now let us see some of the previous year questions asked from 'Simplification' & try to apply the rules learnt so far.

Q. 1)
$$(17-13)^4 - 17^4 - 13^4 - [-52(17)^3 - 68(13^3)] = (?)*221$$

Using formula: $(a - b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$) $\Rightarrow (a - b)^4 - a^4 + 4a^3b + 4ab^3 - b^4 = + 6a^2b^2$ $(17 - 13)^4 - 17^4 - 13^4 - [-52(17)^3 - 68(13^3)] = (?)*221$ Here, a = 17 and b = 13

$$\Rightarrow$$
 (?)= (6 (17)² (13)²)/221

$$\Rightarrow (?) = (6 \times 289 \times 169)/221$$

 \Rightarrow (?) = 1326

Q.2) Simplify: 127.001 * 7.998 + 6.05 * 4.001

- 1. 1000
- 2. 1020
- 3. 1040

- 4. 1080
- 5. None of these

Solution: Using the rounding concept

$$127 * 8 + 6 * 4$$

Using the BODMAS rule

$$1016 + 24$$

1040 (Option 3)

Q.3) What will come at place of $?: 9876 \div 24.96 + 215.005 - ? = 309.99$

- 1, 270
- 2, 280
- 3, 290
- 4.300
- 5. 310

Solution: Using the rounding concept

$$9875 \div 25 + 215 - ? = 310$$

Using the BODMAS rule

? = 300 (Option 4)

Q.4) What will come at place of a: $(128 \div 16 \times a - 7*2)/(7^2-8*6+a^2) = 1$

- 1.1
- 2. 5
- 3.9
- 4. 13
- 5.17

Solution: Using the BODMAS rule

$$(8*a - 14)/(49-48+a^2) = 1$$

www.ikchrome.com

$$(8*a - 14)/(1 + a^2) = 1$$

$$8a - 14 = 1 + a^2$$

$$a^2 - 8a + 15 = 0$$

$$a=3$$
 or 5 (Option 2)

Q.5) What will come at place of ?: 85.147 + 34.192*6.2 + ? = 802.293

- 1. 400
- 2.450
- 3, 550
- 4,600
- 5.500

Solution: Using the rounding concept

$$85 + 35*6 + ? = 803$$

Using the BODMAS rule

$$85 + 210 + ? = 803$$

$$295 + ? = 803$$

Q.6) What will come at place of ? : $(3/8 \text{ of } 168)*15 \div 5 + ? = 549 \div 9 + 235$

- 1. 189
- 2. 107
- 3. 174
- 4. 296.
- 5. None of these

Solution: Using the BODMAS rule

$$(3*168 \div 8)*15 \div 5 + ? = 549 \div 9 + 235$$

$$(504 \div 8)*3 + ? = 61 + 235$$

$$63*3 + ? = 296$$

$$189 + ? = 296$$

? = 107 (Option 2)

Key points to remember while solving Simplification Question:

- Replace 'of' by 'Multiplication'.
- Replace '/' by 'Division'.
- Always do the operations in priority according to 'BODMAS'.
- Division & Multiplication have the same priority (Start from left).
- Addition & Subtraction have the same priority.
- Rounding can be done to simplify problems.
- When the given options are very close then rounding doesn't help much.
- Always look at the options before doing simplification that can help in the elimination of options.

www.jkchrome.com www.jkchrome.com www.jkchrome.com

- - (a) 28/17 (b) 15/7
 - (c) 23/17 (d) 38/17
- Evaluate: [9| 3-5 |-5 | 4 |+10] $-3(5)-2\times4\div2$
 - (a) 9/10 (b) -(8/17)
 - (d) 4/7 (c) - (16/19)
- 45 [4 (3 (3 3 6))] is equal to : 3.
 - (a) 10 (b) 6
- (c) 4 (d) 0
- $1 [5 {2 + (5 + 6 2)2}]$ is equal to (b) 2 (a) - 4
 - (c) 0(d) - 2
- Assume that $\sqrt{13} = 3.605$ (approximately) $\sqrt{130} =$ 11.40 (approximately) find the value of : $\sqrt{1.3}$ + $\sqrt{1300} + \sqrt{0.013} \sqrt{13} = 3.605\sqrt{130} = 11.40\sqrt{1.3} +$ $\sqrt{1300} + \sqrt{0.013}$
 - (a) 36.164 (b) 36.304
 - (c) 37.304 (d) 37.164
- On simplification of $\frac{(2.644)^2 (2.356)^2}{}$
 - (a) 1
- (b) 4
- (c) 5 (d) 6
- Simplification of $\frac{(3.4567)^2 (3.4533)^2}{}$ 7.
 - (a) 0.02
- (b) 0.03
- (c) 0.003(d) 3.0
- The value of $\frac{(0.03)^2 (0.01)^2}{}$ 8. 0.03 - 0.01
 - (a) 0.02 (b) 0.004
 - (c) 0.4(d) 0.04
- What is the square root of 0.09
 - (a) 0.3 (c) 0.03
- (b) 0.03(d) 3.0
- $\frac{\sqrt{0.49}}{\sqrt{0.25}} + \frac{\sqrt{0.81}}{\sqrt{0.36}}$ is equal to + (a) 49/10
 - (c)29/10
 - (c) 9/10
- (d) 99/10 11. If the square root of 841 is 29, then 0.00000841 is equal to:
 - (b) 0.0029 (a) 0.029
 - (c) 0.00029 (d) 0.29
- 12. The square root of a positive number less than 100 lies between:
 - (a) 0 and 1000
 - (b) 0 and 10 (c) -10 and 10 (d) - 100 and 100
- 13. By which smallest number should 5808 be multiplied so that it becomes a perfect square?
 - (a) 2 (b) 7
 - (c) 11 (d) 3
- 14. By which smallest number 1323 must be multiplies, so that it becomes a perfect cube?
 - (a) 2
- (b) 3
- (d) 7
- 15. On simplification 3034 (1002 ÷ 20.04) is equal to
 - (a) 3029 (b) 2984
 - (c) 2993 (d) 2543
- **16.** When $\left(\frac{1}{2} \frac{1}{4} + \frac{1}{5} \frac{1}{6}\right)$ is divided by $\left(\frac{2}{5} \frac{5}{9} + \frac{3}{5} \frac{7}{18}\right)$ the www.jkchrome.com

- (a) 51/10 (b) 37/18
- (c) 19/6 (d) 33/10
- 17. $(\sqrt{72} \sqrt{18} \div \sqrt{12})$ is equal to:
 - (a) 6
- (b) $\sqrt{3/2}$
- (d) $\sqrt{6/2}$ (c) $\sqrt{2/3}$
- **18.** The square root of (272² 128²) is: (b) 200
 - (a) 256 (c) 240
 - (d) 144
- 19. The digit at the unit's place in the square root of 15876 is:
 - (a) 8
- (b) 6
- (c)4(d) 2
- 20. If the sum of two numbers is 22 and sum of their squares is 404, then the product of the number is:
- (b) 44
- (c) 80 (d) 88 **21.** $(5.5)^3$ - $(4.5)^3$ is equal to :
 - (a) 1
- (b) 75
- (d) 75.25 (c) 74.25
- 22. Which of the following is a perfect square as well as a cube?
 - (a) 81
- (b) 125
- (c)343
- (d) 64
- 23. When the square of a natural number subtracted from its cube, the result is 48. Find the number.
- (b) 6
- **(a**) 5 (d) 4
- **24.** Simplify:
- (c) 49/19 (d) 38/43
- **25.** If $\frac{40}{*} = \frac{*}{12\frac{1}{2}}$ then the value of * is:
 - (a) 25/2
- (b) 4/25
- (c)4
- (d) 25
- **26.** Find the sum of the following: $\frac{1}{9} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{30$

 - (a) 1/2
- (b) 0
- (c) 1/9
- - (a) 2/5 (c) 3/5
- (b) 5/2
- 28. The value of
 - (a) 3/2
- (b) 0.05 (d) 2
- (c) 1

 - (c) 9/20
 - (d) 10
- $0.83 \div 7.5$ 30. $\frac{0.52}{2.321-0.098}$ - is equal to
 - (a) 0.6
- (b) 0.1
- (c) 0.06(d) 0.05
- **31.** For what value of * statement $\left[\frac{*}{21} \times \frac{*}{189}\right] = 1$ is correct?
 - (a) 3969
- (b) 147 (d) 21
- (c) 63
- **32.** The sum of $\sqrt{0.01} + \sqrt{0.81} + \sqrt{1.21} + \sqrt{0.0009}$
 - (a) 2.1 (c) 2.03
- (b) 2.13 (d) 2.11
- www.jkchrome.com

reswittikistome.com

www.jkchrome.com

(b) 3/2(c) 2/3

www.jkchrome.com (d) 5/3

(c) 4.5(d) 5.5

67. The simplified value of $[(0.111)^3 + (0.222)^3 (0.333)^3 + (0.333)^2(0.222)]^3$

(a) 0.999 (b) 0

(c) 0.888(d) 0.111

 $\frac{\frac{1\frac{1}{4} \div 1\frac{1}{2}}{(\frac{1}{15} + 1 - \frac{9}{10})}}{(\frac{1}{15} + 1 - \frac{9}{10})} is equal to:$

(a) 3 (b) 6(c) 2/5(d) 5

69. The simplification of: (0.63 + 0.37 + 0.80) yield the

(a) 1.80 (b) 1.81

(c) 1.79 (d)1.80

70. $\left(\frac{(4.53-3.07)^2}{(3.07-2.15)(2.15-4.53)} + \frac{(3.07-2.15)^2}{(2.15-4.53)(4.53-3.07)} + \frac{(3.07-2.15)^2$ $\frac{1.03}{(4.53-3.07)(3.07-2.15)}$ is simplified to:

(a) 0 (b) 1

(c) 2 (d)3

71. The square root of 0.4 is:

(a) 0.8 (b) 0.6

(c) 0.7(d) 0.9

72. The value of $\sqrt{32}$ - $\sqrt{128}$ + $\sqrt{50}$ correct to 3 places of decimal is:

(a) 1.732 (b) 1.141

(d) 1.441 (c) 1.414

 $\sqrt{\frac{48.4}{0.289}}$ is equal to :

(a) 2200/17

(b) 22/17

(c) 220/17 (d) 205/17

74. The number, whose square is equal to the difference of the square of 75.15 and 60.12 is

(a) 46.09 (b) 48.09

(d) 47.09 (c) 45.09

75. The sum of the squares of two numbers is 386. If one of the number is 5, the other will be:

(b) 19 (a)18 (d) 20 (c) 15

76. The sum of the cubes of the numbers 22, -15 and -7is equal to

(a) 6930 (b)9630

(c)3(d) 0

77. The sum of the digits of the smallest number which, when multiplied by 1800, gives a perfect cube, is

(a) 2 (c) 6

78. The value of $\frac{2}{3} \times \frac{5}{4}$

(c) 1/2

(c) 2/3

79. $\left(4\frac{11}{15} + \frac{15}{71}\right)^2 - \left(4\frac{11}{15} - \frac{15}{71}\right)^2$ is equal to:

(b) 2 (a) 1 (c) 3 (d) 4

80. If * represent a number, then the value of * in

 $5\frac{3}{*} \times 3\frac{1}{2} = 19$

(b) 4

(d) 2

81. $(\sqrt{2} + \frac{1}{\sqrt{2}})^2$ equal to:

(a) 5/2

(b) 7/2

(c) 9/2

(d) 10/1

0.2×0.2×0.2+0.04×0.04×0.04 **82.** The value of 3 $\sqrt{0.4\times0.4\times0.4+0.08\times0.08\times0.08}$

> (a) 0.5 (b) 0.25 (c) 0.75(d) 0.125

83. The smallest number added to 680621 to make the sum a perfect square is

www.jkchrome.com

(a) 4 (b) 5

(c)6(d) 8

84. The smallest positive integer when multiplied by 392, the product is a perfect square is

(a) 6 (b) 5

(c)3(d) 2

85. Which smallest number must be added to 2203 so that we get a perfect square?

(a) 1 (b) 3 (c) 6(d)8

86. The number, whose square is equal to the difference between the squares of 975 and 585, is:

(a) 780 (b) 390 (c) 1560 (d) 130

87. If the sum and difference of two number are 20 and 8 respectively, then the difference of their squares is:

(b) 28 (a) 12 (c) 80 (d) 160

88. The sum of the squares of two positive integers is 100 and the difference of their squares is 28, The sum of the numbers is:

(a) 12 (b) 13 (d) 15 (c) 14

Which smallest number must be added to 710 so that the sum is a perfect cube?

(a) 29 (b) 19

(c) 11(d) 21

90. $\frac{13}{48}$ is equal to

91. The value of 1 +

(a) 21/13 (b) 17/2

(c) 34/21(d) 8/5 $\frac{(3.63)^2 - (2.37)^2}{2}$ is equal to

3.63+2.37 (b) 1.36 (a) 6

(d) 1.26 (c) 2.26

93. The number of perfect square numbers between 50 and 1000 is:

(a) 21 (b) 22 (c) 23(d) 24

94. Given that $\sqrt{24}$ is approximately equal to 4.898. $\frac{\sqrt{8}}{\sqrt{3}}$ is nearly equal to:

(a) 0.544 (b) 1.333

(d) 2.666 (c) 1.633

95. There are some boys and girls in a room. The square of the number of the girls is less than the square of

(d) 20 [(5+5+5+5)÷5] www.kchrome.comis equal to : 3+3+3+3+3+ ÷3

(a) 1010

(c) 101

(a) 5

(c) 15

(b) 110

(d) 100

(b) 10

109. $(0.5 \times 5 + 0.25 \times 0.5 + 0.5 \times 4 + 0.5 \times 0.75)$ is equal to

www.ikchrome.com

(a) 11/6

(c) 15/6

(c) 3.208

(a) 0

126. The value of $\frac{[(3.2)^2 - 0.008]}{[(3.2)^2 - 0.008]}$

(b) 13/6

(b) 2.994

(d) 3

 $(3.2)^2 + 0.64 + 0.04$

(d) None of the above

www.jkchrome.com

www.jkchrome.com

- - (a) 37/78 (b) 37/13 (c) 74/78 (d) 74/13
- (b) 5
 - (a) 1
 - (d) 1/2(c) 1/5
- 129. The sum of the squares of 3 consecutive positive numbers is 365. The sum of the numbers is
 - (a) 30
- (b) 33
- (d) 45 (c) 36
- **130.** If the number p is 5 more than q and the sum of the squares of p and q is 55, then the product of p and q
 - (a) 10
- (b) -10
- (c) 15
- (d) 15
- 131. The product of two numbers is 45 and their difference is 4. The sum of squares of the two numbers is:
 - (a) 135
- (b) 240
- (c) 73
- (d) 106 **132.** $\sqrt[3]{(1-\frac{127}{373})}$ is equal to:
- (a) 5/9
- (b) 1 1/7

- 0.225×1.7775×0.2222
 - (a) 5.4
- (b) 4.58
- (d) 5.45 (c) 4.5
- **134.** The simplified value of $\sqrt{(0.25 \times 2.25)}$ is
 - (a) 0.075
- (b) 0.705 (d) 7.500
- (c) 0.750
- **135.** if $\sqrt{18225} = 135$, then the value of $\sqrt{18225}$ $\sqrt{182.25} + \sqrt{1.8225} + \sqrt{0.018225}$ is
 - (a) 14.9985
- (b) 149.985
- (c) 1499.85 (d) 1.49985
- **136.** The value of $\frac{\sqrt{(0.064 \times 0.256 \times 15.625)}}{}$ $\sqrt{(0.025 \times 0.625 \times 4.096)}$
 - (a) 2
- (b) 2.4
- (d) 4.2 (c) 0.24
- 137. The number of pairs of natural numbers the difference of whose squares is 45 will be
- (b) 3 (d) 6 (d) 5
- **138.** If $\sqrt[3]{3^n} = 27$, then the value of n is:
 - (a) 9
- (b) 6
- (c) 1

- (b) 1/2

- **140.** $\frac{1}{1+2^{a-b}} + \frac{1}{1+2^{b-a}}$ is equal to
 - (a) a b
- (b) b a

- **141.** Find the sum of $\left(1 \frac{1}{n+1}\right) + \left(1 \frac{2}{n+1}\right) + \left(1 \frac{3}{n+1}\right) + \dots + \left(1 \frac{n}{n+1}\right)$
 - (a) n
- (b) 1/2 n
- (c) n + 1 (d) 1/2 (n + 1)
- **142.** The value of $5\frac{1}{3} \div 1\frac{2}{9} \times \frac{1}{4} \left(10 + \frac{3}{1-\frac{1}{\epsilon}}\right)$

- (a) 15
 - (b) 67/25
- (c) 128/11 (d) 128/99
- **143.** The value of $(3 + \sqrt{8}) + \frac{1}{3 \sqrt{8}} (6 + 4\sqrt{2})$
- (c) √2
- (d) 0
- **144.** What is the value of $\frac{\sqrt{24} + \sqrt{216}}{\sqrt{96}} = ?$
 - (a) 2√6
- (b) 4√6
- (c) 2
- (d) 4
- 145. Number of digits in the square root of 62478078 is: (b) 5
 - (a) 4
 - (c) 6 (d) 3
- **146.** If $\left(n^r tn + \frac{1}{4}\right)$ be a perfect square, then the values of t are:
 - $(a) \pm 2$ (b) 1,2
- (c) 2.3 $(d) \pm 1$
- 147. The greatest 4 digit number which is a perfect square, is
 - (a) 9999 (b) 9909
 - (d) 9081 (c) 9801
- 148. What number must be added to the expression 16a2 - 12a to make it a perfect square?
 - (a) 9/4
- (b) 11/2

(b) 4813

- (c) 13/2 (d) 16
- **149.** The value of $\sqrt{(4^3 + 15^2)^3}$
 - (a) 4913
 - (c) 4193 (d) 3993
- 150. The least number which must be added to 1728 to make it a perfect square is
 - (a) 36
- (b) 32
- (c) 38
- (d) 30
- **151.** If a = 64 and b = 289, then the value of $(\sqrt{\sqrt{a} + \sqrt{b}} \sqrt{b-a}$)^{1/2} is
 - (a) $2^{1/2}$
- (b) 2 (d) - 2
- (c)4**152.** $\sqrt{64009}$ is equal to: (a) 352 (b) 523
 - (c) 253
- (d) 532
- **153.** A tourist spends daily as many rupees as the number of days of his total tour. If his total expenses were Rs. 361, then how many days did his tour last?
 - (a) 17 days (b) 19 days
 - (c) 21 days (d) 31 days
- **154.** The value of $\sqrt{(10^{-6} \times 0.25)}$ is
 - (a) 0.00025 (b) 0.0005
 - (c) 0.25
- (d) 0.50
- **155.** The simplified value of: $\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}} = \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}} + \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$
 - (a) √2
- (c) $\sqrt{3} \sqrt{2}$ (d) 0
- **156.** The value of $\frac{4-\sqrt{0.04}}{4+\sqrt{0.4}}$ is close to
 - (a) 0.4
- (c) 1.0
- (d) 1.4
- **157.** If $\sqrt{(0.05 \times 0.5 \times a)} = 0.5 \times 0.05 \times \sqrt{b}$, then $\frac{a}{b}$ is equal to:
 - (a) 0.0025 (b) 0.025
 - (c) 0.25

www.jkchrome. 159. The value of (1001)3 is

- (d) 0.00025
- **158.** If $x = \sqrt{3} + \sqrt{2}$ then the value of $x^3 \frac{1}{\sqrt{3}}$ is
 - (a) 10√2 (b) $14\sqrt{2}$
 - (c) 22√2 (d) 8√2

(a) 1003003001 (b) 100303001 www.jkchrome.com	61.	b	62.	ď	www.jkchrome.co	a a
(c) 100300301 (d) 103003001	64.	d	65.	d	66.	С
160. What is the smallest number by which 625 must be	67.	b	68.	d	69.	b
divided so that the quotient is a perfect cube?	70.	d	71.	b	72.	C
(a) 25 (b) 5	70. 73.		71. 74.			
(c) 2 (d) 3		C		C	75.	b
161. $\frac{1}{a + \frac{1}{b + \frac{1}{c + \frac{1}{2}}}} = \frac{16}{23}$ then the value of $a + b + c$ is	76.	a	77.	С	78.	а
$b+\frac{1}{c+\frac{1}{2}}$	79.	d	80.	а	81.	С
(a) 3 (b) 6	82.	а	83.	а	84.	d
(c) 9 (d) 12	85.	С	86.	а	87.	b
162. The sum of two numbers is 46/3 and their	88.	С	89.	b	90.	d
difference is 14/3, the product of the number is:	91.	С	92.	d	93.	d
(a) 144/3 (b) 60	94.	С	95.	b	96.	d
(c) 50 (d) 159/3	97.	С	98.	C	99.	b
163. The value of following is: $\sqrt{[12 + \sqrt{12 +}]}$	100.	а	101.	b	102.	d
(a) $2\sqrt{2}$ (b) $2\sqrt{3}$	103.	С	104.	b	105.	а
(c) 4 (d) 2	106.	а	107.	d	108.	d
164. If $x = \sqrt[3]{(\sqrt{7} + 3)}$ then the value of $x^3 - 9x^2 + 27x - 34$	109.	а	1 10.	d	111.	С
is: (a) 2 (b) 1	112.	а	113.	b	114.	b
(a) 2 (b) 1 (c) -1 (d) 0	115.	a	116.	d	117.	d
165. The value of x in the below equation is: $0.3 + 0.6 +$	118.	C	11 9.	b	120.	c
0.7 + 0.8 = x	12 <u>1</u> .	a	122.	b	123.	С
(a) 5.3 (b) 2.35	124.		125.	a	125. 126.	d
(c) 8/3 (d) 23/10		d	123. 128.		120. 129.	
166. Simplified value of the following expression	127.	a		b		b
is: $\frac{1}{\sqrt{11} - 2\sqrt{30}} - \frac{3}{\sqrt{7} - 2\sqrt{10}} - \frac{4}{\sqrt{8} + 4\sqrt{3}}$	130.	С	131.	d	132.	b
(a) 0 (b) 1	133.	С	134.	C	135.	b
(c) $\sqrt{2}$ (d) $\sqrt{3}$	136.	а	137.	b	138.	a
167. Given $2^2 + 4^2 + 6^2 + + 40^2 = 11480$, then the value	139.	С	140.	С	141.	b
of $1^2 + 2^2 + 3^2 + \dots + 20^2$ is:	142.	а	143.	d	144.	С
(a) 2868 (b) 2870	145.	а	146.	d	147.	С
(c) 2869 (d) 2867	148.	а	149.	а	150.	а
168. The sum of 3 consecutive natural numbers divisible	151.	а	152.	С	153.	b
by 3 is 45. The smallest number is:	154.	b	155.	d	156.	b
(a) 12 (b) 3	157.	b	158.	C	159.	а
(c) 18 (d) 9	160.	b	161.	b	162.	d
1. a 2. c 3. a	163.	С	164.	d	165.	С
	166.	а	167.	b	168.	а
10. b 11. b 12. c						
13. d 14. d 15. b						
16. a 17. d 18. c						
19. b 20. a 21. d						
22. d 23. d 24. d						
25. d 26. a 27. b						
28. a 29. a 30. d						
31. c 32. b 33. c						
34. c 35. c 36. a						
37. d 38. c 39. c						
40. a 41. d 42. c					RVME	
43. c 44. d 45. c				CHI	RVME	
46. b 47. d 48. d						
49. a 50. b 51. c		,				
52. b 53. c 54. a						
52. d 53. d 57. d						

b

d

57.

60.

55.

www.jkchrome.com

d

56.

59.

d

b

www.jkchrome.com www.jkchrome.com

JK Chrome | Employment Portal

Rated No.1 Job Application of India

Sarkari Naukri Private Jobs **Employment News** Study Material **Notifications**

MATERIAL

JK Chrome

jk chrome Contains ads

www.jkchrome.com | Email : contact@jkchrome.com