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Basics of Signals & Systems

Properties of Signals

A signal can be classified as periodic or aperiodic; discrete or continuous time;
discrete of continuous-valued; or as a power or energy signal. The following
defines each of these terms. In addition, the signal-to-noise ratio of a signal
corrupted by noise is defined.

Periodic / Aperiodic:

A periodic signal repeats itself at regular intervals. In general, (t) for
which

x(t) = x(t+7) @ =
for all t is said to be periodic.

The fundamental period of the signal is the mi mpositive, non-zero value
of T for which above equation is satisfied. én is not periodic, then it

is aperiodic. K
Symmetric / Asymmetric: Q
There are two types of signal @ : odd and even. A signal x(t) has odd

symmetry if and only if ®(-t) rall t. It has even symmetry if and only if x(-

t) = x(t). ¢
Continuous and Di re%nals and Systems

A continuou mathematical function of an independent variable, which
represent t al numbers. It is required that signals are uniquely defined
in exce ite number of points.

.

(
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« A continuous time signal is one which is defined for all values of time. A
continuous time signal does not need to be continuous (in the
mathematical sense) at all points in time. A continuous-time signal
contains values for all real numbers along the X-axis. It is denoted by x(t).

« Basically, the Signals are detectable quantities which are used to convey
some information about time-varying physical phenomena. some
examples of signals are human speech, temperature, pressure, and s
prices.

« Electrical signals, normally expressed in the form of voltage or cugien
waveforms, they are some of the easiest signals to generateO ess.

continuous time signal.

Ax(n) @ ¢
A

-1 |-m2

Example: A rectangular wave is discontinuous at several point@

Discrete / Continuous‘- i

A continuous time signalis defined for all values of t. A discrete time signal is

only defined for dis ete* soft=.., t1, o t1, ..., th, the1, thez, ... It is UNCOMmMoN
for the spacing n tn afid tn+1 to change with n. The spacing is most often
some const e referred to as the sampling rate,

Ts = tn+ ~ tn

It is nient to express discrete time signals as x(nTs)=x|n].

That is; if x(t) is a continuous-time signal, then x[n] can be considered as
the n' sample of x(t).

Sampling of a continuous-time signal x(t) to yield the discrete-time signal x[n] is
an important step in the process of digitizing a signal.
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Energy and Power Signal:

When the strength of a signal is measured, it is usually the signal power or signal
energy that is of interest.

The signal power of x(t) is defined as

[

1 T
P =lim— | x(ndr
. I—m=T
O

and the signal energy as O

00 00 TS
Ex =/ |$(t)|2dt Eyw = @

—00

« A signal for which Py is finite and non-ze known as a power signal.
« Asignal for which Ex is finite and nos nown as an energy signal.

o Pxis also known as the mean-squdre of the signal.

« Signal power is often exprgss & units of decibels (dB).
o The decibel is defined as
EN O
P . =10log L—J

« WherePpisa fer%n power level, usually equal to one squared Sl unit of
the signal.

e signal is a voltage then the Pq is equal to one square
n be Energy Signal or a Power Signal but it can not be both.
ignal can be neither a Energy nor a Power Signal.
n example, the sinusoidal test signal of amplitude A,

x(t)=Asin(wt)

has energy Ex that tends to infinity and power,
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or in decibels (dB): 20log(A)-3
The signal is thus a power signal.
Signal to Noise Ratio:

Any measurement of a signal necessarily contains some random noise in
addition to the signal. In the case of additive noise, the measurement is

x(t)=s(t)+n(t)

where s(t) is the signal component and n(t) is the noise compoco

The signal to noise ratio is defined as

: &
SVR, ==
=7

or in decibels, O
P
SNR, =10log| =
R, Dg[ PH] Q&
The signal to noise ratio is @

ion of how much noise is contained in a

measurement. *

Standard Continuous T\ nals
Impulse S *
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When A =1 (unit impulse Area)

5(t)
'y

-

0

Unit impulse function

« Step Signal
) — A:1=0
= r=0

Unit Step Signal if A =1,

x(r}:u(rj:{lgr}ﬂ @

1 . 4

0;r<0 Q C
u(t) ?
0 s 0 a

L 4

(@) unit step fun ) Shifted Unit Step Function

« Ra al

At;t>0
O0:t=0

Unit Ramp Signal (A=1)

t.t>=0

Im:rm:{ﬂ'[{ﬂ
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Unit Ramp Function

« Parabolic Signal

Ar’
— =0
x(t)=4 2 7~

0;r<0

Unit Parabolic Signal when A =1,

T O

x()y=q2"7 =
0;r=<0 Q

------

>

2 3
rabolic function

o Unit Pulse Signal

x(t)= x(t)
=u(t+1/2)-u(t-1/2)

Page 7 of 66
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x(t) = rect(t)

A
v
Lad

1 0

2 2

Unit Rectangular Pulse Function
Sinusoidal Signal O

« Co-sinusoidal Signal: 0
2
x(f)= Acos(@, t+ @) @

Where, wo is the angular frequency in rad/se

fo = frequency in cycle/sec or Hz O
T = time period in second K
When 0:

¢=0, x(t)= A cos Dl

When ¢ = positive,
_ 2

-

Sinusoidal Signal:

x(t)= A sin ( @t + {35‘]

Where,
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2

Angular frequency in red/sec
fo = frequency in cycle/sec or Hz
T = time period in second
When ¢= 0, x(t)= 4sin(@,1)

When ¢ = positive, x(f)= dsin (@1 + 9)

When ¢ = negative, x(f)= 4 sin (0,1 ¢)

x(t) 6=0 x(t)

sinusoidal signal Sinusoidal signal

Exponential Signal:

« Real Exponential Signal

_ g
x()=de: where, A and b are real.

Page 9 of 66
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x(t) x(t)
b = Positive / \ b = Negative
0 . 0 t
Exponential signal Exponential signal when b <0

« Complex Exponential signal

x(t)= Ae™ O

The complex exponential signal can be represented in a com@lane by a
rotating vector, which rotates with a constant angular v@ o‘wo red/sec.

Imaginary

Complex exponential asa
complex plage

v
« Exponentiall isng caying Sinusoidal Signal

' '
w o
* .
. "
-
CT

Exponentially rising Exponentially decaying

« Triangular Pulse Signal
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1]
N =_ra()= 1- 2’ = a

O:|tl>a

4

x(t) = tri(t)
h

1

pa=c 0 TR 0
Unit Triangular Function .
. <O .

« Signum Signal B
7 sl

1: ]
(@) = Sen(r) = {_1 ! i: ; @

Sgn(t)= 2u(r)—1

Sgn(t) = u(t) —u(—r) Q

nit Sighum Function

« SinC Signal

x(t)==nC ()= Sl—m_;cc <<l 00
t
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x(t) = sinc(w,t)

4
1

S
g

17 1\/
w w

0 v o

Sinc Function

« Gaussian Signal 0
(=gt = R e

0.9

0.8F
0.7

0.6

v

A

04r
03r
0.2H
0ap

-2

Importa ts:

sinusoidal and complex exponential signals are always periodic.
sum of two periodic signals is also periodic if the ratio of their
ndamental periods is a rational number.
« Ideally, an impulse signal is a signal with infinite magnitude and zero
duration.
« Practically, an impulse signal is a signal with large magnitude and short
duration.

Page 12 of 66
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Classification of Continuous Time Signal: The continuous time signal can be
classified as

1. Deterministic and Non-deterministic Signals:
o The signal that can be completely specified by a mathematical
equation is called a deterministic signal. The step, ramp, exponential
and sinusoidal signals are examples of deterministic signals.
o The signal whose characteristics are random in nature is cal
non-deterministic signal. The noise signal from various so

electronic amplifiers, oscillator etc., are examples of nb

deterministic signals.

o Periodic and Non-periodic Signals
o A periodic signal will have a definite pattern that r@peat§ again and

again over a certain period of time.

X(t+T) = x(t)

2. Symmetric (even) and Anti-symmetric (o

When a signal exhibits symmetry with re @
signal.

X(-t) = x(t) K
™

t =0, then it is called an even

4 x(t)
x(0) *
2
t
=X -
2 2
en Signal

When a signal exhibits anti-symmetry with respect to t = 0, then it is called an odd
signal.

x(-t) = -x(t)

Let
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X=X+ X, (1)
Where,

X, (1)=

even part of

X, ()=

odd part of ¥ @ Q
Xer:r}=é[ X (0)+ X (1) .
Xﬁirjzé[‘?‘{r}—}{{—r}] @

4 x(1)
1 O
-T/2 >t Q&
T/2
-* O

v

2
0Odd signal
4
Discrete-Time,Si
The discr nal is a function of a discrete independent variable. In a discrete

e value of discrete time signal and the independent variable time
te. The digital signal is same as discrete signal except that the
of the signal is quantized. Basically, discrete time signals can be
d by sampling a continuous-time signal. It is denoted as x(n).

time si

Page 14 of 66
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: - o
n
Standard Discrete Time Signals O

« Digital Impulse Signal or Unit Sample Sequence 0

4
Impulse signal,

&[;nJ={L" el

@
) f
S

¢
0 0 k

(a) DT Unitl ulsQFu on (b) DT Shifted Unit Impulse Function

n =0
n-<0
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w[e-k]

(SRS EEREE

k4l k42 ke

(a) DT Unit Impulse Function,(b) Shifted DT Unit Impulse Function

« Ramp Signal

Ramp signal, O
; =0
. (ﬂ:{”* "2 0

H N W oA oo
e
Tl

l l +n

DT unit aelctmn

. Exponentlal Slg
% n=0
Exponenti <0

g(n) 9 (r)

4,

1\, '

i
o1 2 3 I E"""*‘ﬁ‘" | T

ST W AT 2324 88
(a) Decroasing exponential signal (b) Increasing exponential signal
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« Discrete Time Sinusoidal Signal

x| n] = Acosl @gn+ ) ; For nin the range — < n< =

x[n] = Asin( @on+ 6) ; For nin the range —*<n<x

Al
At P

4x(n) = sin %ﬂ @ P
T 11T
' &9‘[5 frequency is a }ation:all

« Adiscrete-time sinusoid is per
number.

« Discrete-time sinusoids requencies are separated by an integer
multiple of 2t are ide ti@

Operations in Continio ignals:
Periodic & Non-Periodic als:
« Asign dic signal if it completes a pattern within a measurable
time,fr lled a period and repeats that pattern over identical

t periods.
iod is the smallest value of T satisfying g(t + T) = g(t) for all t. The
iod is defined so because if g(t + T) = g(t) for all t, it can be verified
hat g(t + T') = g(t) for all t where T' = 2T, 3T, 4T, ... In essence, it's the
mallest amount of time it takes for the function to repeat itself. If the
period of a function is finite, the function is called "periodic".

« Functions that never repeat themselves have an infinite period, and are
known as "aperiodic functions".

Page 17 of 66
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A N A <
> Ak 1'% =

AL AWM A Ay

-) i

Even & Odd Signals: O

A function even function if it is symmetric about the y-axis. W)‘@ignal is odd
if it is inversely symmetrical about the y-axis.

*
Even Signal, f(x) = f(-x) @

0dd Signal, f(x) = - f(-x)

I\
" C\)Q
ML

Note: Some fun ar‘n her even nor odd. These functions can be written
as a sum of eyen dd functions. A function f(x) can be expressed in terms of

ion and an even function.

z)} -+ 1/2{f(z) —
y and Inverse Systems:

A system is invertible if distinct inputs results distinct outputs. As shown in the
figure for the continuous-time case, if a system is invertible, then an inverse
system exists that, when cascaded with the original system, results an output
w(t) equal to the input x(t) to the first system.
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An example of an invertible continuous-time system is y(t) = 2x(t),

for which the inverse system is w(t) = 1/2 y(t)

(
() | y(t) = 2x(t) ] wit) = Ly(t) —= wit] = x(9

Causal System:

A system is causal if the output depends only on the input at the prgs e
and in the past. Such systems are often referred as non anticipative the
system output does not anticipate future values of the input. two

ya(t) = 2x(t) + x(t-1) + [x(t)]?> = Causal Signal

ya(t) = 2x(t) + x(t-1) + [x(t+2)] = Non-Causal Sigha

Homogeneity (Scaling): ; O

A system is said to be homogengoussi any input signal X(t), i.e. When the
input signal is scaled, the output al 1§ scaled by the same factor.
Xt)—8-Y(s) =aX(t)—8 @

Time-Shifting / Time %’ime Scaling:

Time-Shifting Y

Time Shiftin derstood as shifting the signal in time. When a constant
is adde@dm , We obtain the advanced signal, & when we decrease the

time, w elayed signal.

/"‘\\_ / ™
5/ v A
/ "\ . f‘f
/ | .fllf M : / /
f{t]._..T).f(t . a} f[t]_"‘f(t + a]
shift signal “a” units right) (shift signal “a” units left)
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Time Scaling:

Due to the scaling in time the output Signal may shrink or stretch it depends on
the numerical value of scaling factor.

flty—f(t/a)

f(t)—f(at)

(shrink signal “a” units (stretch signal “a” units 0
alonghorizontal) alonghorizontal)

2
Time Inversion:

Time Inversion referred as flipping the signal ak@utthe y-axis.

f(t)—f(-t) O
+ (mirrorimage about »@

L.T.l. Systems

Linear Time-Inv Sy‘ste

riant systems (LTI systems) are a class of systems used

in sign stems that are both linear and time-invariant. Linear systems are
Sys e outputs for a linear combination of inputs are the same as a

line bination of individual responses to those inputs. Time-invariant

applied. These properties make LTI systems easy to represent and understand
graphically.

Linear systems have the property that the output is linearly related to the input.

Changing the input in a linear way will change the output in the same linear way.
So if the input x1(t) produces the output y1(t) and the input x2(t) produces the

Page 20 of 66



21 www.jkchrome.com www.jkchrome.com www.jkchrome.com

output y2(t), then linear combinations of those inputs will produce linear
combinations of those outputs. The input {x1(t)+x2(t)} will produce the
output {y1(t)+y2(t)}. Further, the input {a1x1(t)+az2x2(t)} will produce the
output {a1y1(t)+azy2(t)} for some constants a; and az.

In other words, for a system T over time t, composed of
signals x1(t) and x2(t) with outputs yi(t) and ya(t) ,

T[ayzy(t) + azza(t)] = a1 Tz (8)] + a2 T [22(t)] = argn (t) + aaua(t)

Homogeneity Principle: O
AF|  — L — Y Ary — L Em— p

“)
Superposition Principle:
ar; + fJry — L —> ajyy + .HO

Thus, the entirety of an LTI syst escribed by a single function called
in the time domain of the system. For
an arbitrary input, the output o ystem is the convolution of the input
signal with the system's impulSe response.

Conversely, the LTI sy‘s n also be described by its transfer function. The
transfer function is the La e transform of the impulse response. This
transformation changes the function from the time domain to the frequency
domain. This tra ation is important because it turns differential

Page 21 of 66
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ft)
ﬁ\
Ir U | 1I t
cos2mafgt
Time Domain

Frt)

N

o | O
-fa fl:l
%[E(f-fnj+5(f+fn:|] 0

Frequency Domain
L 4
i nd a bit abstract

inear system, we need

Homogeneity, additivity, and shift-invariance may,
but they are very useful. To characterize a shift-i
to measure only one thing: the way

the system responds to a unit impulse. Thi e is called the impulse
response function of the system. Once sured this function, we can (in

principle) predict how the system will
respond to any other possible st

Introduction to Convolution 0

Because here’s not a sin er to define what is? In “Signals and Systems”
probably we saw convadlutionin connection with Linear Time-Invariant
Systems and the impulse response for such a system. This multitude of
interpretations pliéations is somewhat like the situation with the definite
integral.

To pursue alogy with the integral, in pretty much all applications of the
integr is"a general method at work:

the problem into small pieces where it can be solved approximately.
um up the solution for the pieces, and pass to a limit.

Convolution Theorem

F(g+f)(s)=Fg(s)Ff(s)

« In other notation: If f(t)e F(s) and g(t) © G(s) then (g«f)(t)e G(s)F(s)

Page 22 of 66
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« In words: Convolution in the time domain corresponds to multiplication in
the frequency domain.

1
(geN)(t)= /n g(t — z)f(z) dz

. Forthe Integral to make sense i.e., to be able to evaluate g(t-x) at points
outside the interval from 0 to 1, we need to assume that g is periodict'it
not the issue the present case, where we assume that f(t) and g(t)far

defined for all t, so the factors in the integral O
[ ste—ns(z)as

- O
Convolution in the Frequency Domain @ 4
« In Frequency Domain convolution theorem states,t
F(g * f)=Fg -Ff
« here we have seen that the whol i@arried out for inverse Fourier

transform, as follow:
F (g*f):F'1g'F_1f Q

F(gf)(s)=(Fg*Ff)(s) .
« Multiplication in the tifae domain corresponds to convolution in the

frequency dotnain.
q y *

By applyin ormula

F(Ff)(s) or F(Ff)=f~ without the variable.

derive the identity F(gf) = Fg=Ff, we assume for convenience, h =
nd k = Fg

then we can write as  F(gf)=k+h

« The one thing we know is how to take the Fourier transform of a
convolution, so, in the present notation, F(kxh)=(Fk)(Fh).

Butnow Fk=FFg=g-

Page 23 of 66
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and likewise Fh =FFf = f

So F(k+h)=g~f =(gf)", or gf =F(kxh)"

Now, finally, take the Fourier transform of both sides of this last equation
FF identity : F(gf)=F(F(k+h)-)=k+h =Fg=Ff

Note: Here we are trying to prove F(gf)(s) = (Fg*Ff)(s) rather

than F(g«+f)=(Ff)(Fg) Because, it seems more “natural” to multiply signalStin t
time domain and see what effect this has in the frequency domain, 8 ot
work with F(fg) directly? But write the integral for F(gf); there’s p duU can

do with it to get toward Fg=Ff.
There is also often a general method of convolutions: @ P

« Usually there’s something that has to do
with smoothing and averaging,understoo adly:

« You see this in both the continuous case “and discrete case.
Some of you who have seen convolutio courses,you've probably heard
the expression “flip and drag”

Meaning of Flip & Drag: here’s anifg of Flip & Drag is as follow
« Fixavaluet.The graph o unction g(x-t) has the same shape as g(x)
but shifted to tHe r Then forming g(t - x) flips the graph (left-right)

about the line x =
« If the most interesting,or important features of g(x) are near x = 0, e.g., if

it's sharpl ed%h e, then those features are shifted to x =t for the
functi but there’s the extra “flip” to keep in mind).Multiply f(x)
and d integrate with respect to x.

Avera

fer to think of the convolution operation as using one function to
mooth and average the other. Say g is used to smooth f in g«f. In many
common applications g(x) is a positive function, concentrated near 0, with
total area 1.

/w g(z)dz=1

-0
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« Like a sharply peaked Gaussian, for example (stay tuned). Then g(t-x) is
concentrated near t and still has area 1. For a fixed t, forming the integral

[~ att-)1@)ds

« The last expression is like a weighted average of the values of f(x) near x
= t, weighted by the values of (the flipped and shifted) g. That's the
averaging part of the convolution, computing the convolution g=fat

replaces the value f(t) by a weighted average of the values 01‘6 :

Smoothing

. Again take the case of an averaging-type function g(t), age. At a given
value of t,( g * f)(t) is a weighted average of valu near t.

« Then Movet a little to a point to. Then (g*f)(to is%hted average of
values of f near to, which will include values tered into the
average near t.

« Thus the values of the convolutions (
closer to each other than are the val

g*f)(to) will likely be
d f(to). That is, (g #f)(t) is
“smoothing” f as t varies — theregle change between values of the

convolution than between val &
Other identities of Convolutim&
‘

It's not hard to combinetthelva ules we have and develop an algebra of
convolutions. Such id&nti be of great use — it beats calculating integrals.
Here's an assortment. (L and uppercase letters are Fourier pairs.)

e are explaining the properties of convolution in both continuous and
discrete domain

» Associative
o Commutative
« Distributive properties
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« AsalTlsystemis completely specified by its impulse response, we look
into the conditions on the impulse response for the LTI system to obey
properties like memory, stability, invertibility, and causality.

« According to the Convolution theorem in Continuous & Discrete time as
follow:

For Discrete system .

x[n] — — y[n] = x[n] ®h{n)

output response of a LTI system to an input x[n] O
y[n] = x[n]*h{n] = 3 x[KJhn-K] c |

convolution sum

2
For Continuous System @

y(t) —f x(t)h(t - 1) m@o

y(t) =x(t) *h(t)

We shall now dISCUS n@nt properties of convolution for LTI systems.
1) Commutative proper\
« In Discreteitime: xfh]*h[n]  h[n]*x[n]

Proof c know that y[n] = x[n]*h[n]
= i x[k) h[n- k]

Let us assume n-k = |

SO,
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+w

ynl= Y sAn-11hll] = h[n]* x[n]

|= .

« So it clear from the derived expression that = x[n]*h[n] & h[n]*x[n]
« In Continuous time:

Proof

y(t) =x(t) *h(t) = h(t) * x(t) O
)= [ x(x)h(t-t)dr = [ h(7)x(t -7)ds Q

<&
So x[t]*h[t] & h[t]*x][t]

2. Distributive Property

By this Property we will conclude tha K ion is distributive over addition.
} =

. Discrete time: x[n){a a {x[n] h1[n]}+ B{x[n] hz[n]} a&
B are constant.
« Continuous Time:  x(t){a h1@)% Bhz(t)} = a{x(t)h1(t)} + B {x(t)h2(t)} a

& B are constant.
2

3. Associative Propert\k
. Discrete Ti [n}*= xIh]*h[n]*g[n]

]'= x[n] * (ha[n] * ha[n])

n] AL b ey b y.ind

xinl | pinjehn] |— ayin]

Associative property of convolution sum
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e In Continuous Time:
[x(t) * hi(t)] * hao(t) = x(t) * [h1(t) * ho(1)]

If systems are connected in cascade:

"m—'; h,(t) h,(t) —f—»v(t) = [x(t) @ h,(t)] ® h,(t)
; [x(t) @ h,(t)] @ h,(t)

§ : [h,(t) ® h.()] @ x,(t) C)O

= Overall impulse response of the system is: @ .

h(t) =h, (t) *h, (£) *h, (£) *...

4. Invertibility &

A system is said to be invertibleg t an inverse system which when
connected in series with the original system produces an output identical to input

(¢+6)[n]= x(n] .\§)
(x*h*h™)[n]= x[n] \
4

(h*h™)[n]= (8)

5. Causali

. c Time

*n

nl= 3 skl Hn—kl= 3 hk]xln-k]

Le - ke =

h[n]=0 Vn<0

o Continuous Time
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4+

y(t) = I x(v) h(t—v)dv

- 0

h(t) =0 Vi<O0

6. Stability

« Discrete Time
; O
> Ih[k]l < o0, in the Discrete domain, Q

k=-w

L 2
« Continuous Time

0
| I h(t) |d <ep . in the Continuous domain.

! O

Laplace Transform

rtant tool to analyse any electrical
Integral-Differential Equation in Algebraic
ime Domain to Frequency

The Laplace Transform is a very,i
containing by which we can conver
by converting the givensituationi
Domain

LXO} e X(o)e=) X@).edr

. isalso'ea ilateral or two-sided Laplace transform.
« If x(t)Nis defined for t=0, [i.e., if x(t) is causal], then

X)) = X (5) =f_:°x(zj et

is also called unilateral or one-sided Laplace transform.
Below we have listed the Following advantage of accepting Laplace transform:

« Analysis of general R-L-C circuits become easier.
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« Natural and Forced response can be easily analyzed.
« The circuit can be analyzed with impedances.
« Analysis of stability can be done easiest way.

Statement of Laplace Transform

. The direct Laplace transform or the Laplace integral of a function f(t)
defined for 0 < t < 0o is the ordinary calculus integration problem fo
given function f(t).

. Its Laplace transform is the function, denoted F(s) = L{f}(s), 06

P& = LU0 = [ e 0

« A causal signal x(t) is said to be of exponential o ?eal, positive
constant o (where o is the real part of s) exis t the function,
e °X(t)] approaches zero as t approachesdnfini

. For a causal signal, if lim ex(t)/=0, for

oc then ocis called the abscissa of ¢
axis in s-plane).

« The value of s for which the mte&
}L -—T
f x(t).e " dt c
— o

d if lim e *x(t)|=00 for o >
ce, (where ocis a point on real

*
converges is called Regdign nvergence (ROC).
« For a causal signalythg ROC includes all points on the s-plane to the right
of absciss nvergence.
o Foran usal signal, the ROC includes all points on the s-plane to the

left abscissa of convergence.

sided signal, the ROC includes all points on the s-plane in the
ion‘in between two abscissae of convergence.

Properties of the ROC
The region of convergence has the following properties

« ROC consists of strips parallel to the jw-axis in the s-plane.
« ROC does not contain any poles.
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« If x(t) is a finite duration signal, x(t) # 0, t; < t < t> and is absolutely
integrable, the ROC is the entire s-plane.

« If x(t) is a right sided signal, x(t) = 0, t; < tg, the ROC is of the form R{s} >
max {R{p«}}

o« If x(t) is a left sided signal x(t) = 0, t; > to, the ROC is of the form R{s} > min
{R{p«}}

« If x(t) is a double-sided signal, the ROC is of the form p1 < R{s} < p2

« Ifthe ROC includes the jw-axis. Fourier transform exists and the s m
stable.

Inverse Laplace Transform O
« ltisthe process of finding x(t) given X(s) Q

X() = L'{X(s)} @ ¢
There are two methods to obtain the inverse Lapla sform.

« Inversion using Complex Line Integral

« Inversion of Laplace &@ndard Laplace Transform Table.

Note A: Derivatives m% ication by s.

o) ®= H - £(0)

- f(0)
F(s)
- f(0)

.(3)
_f(u)) = s°F(s) — sf(0) — f'(0)

—f"=2(0)
_flu-l)“)
_ S”F(S) g"— lf(U) f(n (U) f{n-l‘l(U)

B: Multiplication by t — Derivatives in s.
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C{tf(t)}
C{t"f(t)} =

—F'( )
—1)"F#)(g)

www.jkchrome.com

Laplace Transform of Some Standard Signals

| Waveform

x(1) x(s)= L{x(1)}
x (N x(t)=A4:0< t<T A
) ) X(n==—0-¢€™)
A =0t>T 5
0 T 1t
x(t) A
x(f)= — X()= —
- ) (=2
0<t<T [1- &7 (1+ sT)]
0 E_'t =0;1>T
xit it T
=‘— e -‘!
| x(r) T 0<r< 3 X)) = =
‘AA 2.4r
! =24—
0 g T T
=0;t>T
Waveform x(1)
x(t)
AJI x(r)_
0 T |t
2
Y |

(t)=Asin ;
O<t<T
=0;T>T

x()=10<1<1
=—2;KK1< 2
=—2;4<t<5
=0t>5

X(s)= 2 (1-3e°+
5

4 4%+ 2e%)
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Waveform x(1) x(s)= Lix(n)}
x(t) x(1)= Asin r; X@©O=—2_ [1_4;:’]
A 0< 1< T and (s°+1)|1—e "~
0T 2r 3! x(t+ nT )= x(¢)
;m m x(f)= .;sin L, X = - A —
o T F I J 0<KE (s:-i-l)ll—e’ ]

=0;§< t<T

and (t+ nT)= x(t)

24t T ( Ts S
t)=—;0< t< — 5 B et PR
x(t) T 3 i 24[1 1 5 e '
24t T o CAN
=Ad-——<1<T N1-0 2
T '2 Ts tl e J
and x(t+ nT )= x(1) 4

Waveform x(n)
[T 24t
x(t)= A=—:
(r) s
O< 1< T and
x(t+ nT )= x(1)
T x(rN=A4.0<1<a

LU LT |
t | and(t+ nT)= x(t

0 a T e 3T 2T

A 1

9 T IF [afzr '
2 2

A “

d (t+ nT )= x(r) |:

tandard Laplace Transform Pairs
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x(r) x(s) ROC
3(1) 1 Entire
S-
plane
u(r) 1/s o>0
tu(l) 1/s2 g>0
.r-.. u(f), whers 1/s? i
(n-1)!
n=123 @ <&
—_— > =
e “u(t) 1 5 @
(1) "[ROC
—e Tu(-1) Tr=-a
" u(f) G50
where,
te” % 1 0> -a
& (s+ 0)2
o> -a
: t™ e u(r) : -
(n—1)! (s+ a)
where, n= 1. 2. 3....
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“cosa,tu

S5+ d

(s+a)’ +

x () x(s) ROC
t" e u(t) m! g=>-a
where, n=1,2,3... | (s+ a)” !
sin @, t u(t) @, g>0
( st &:ﬁ]
cos @, t u(t) @, g >0
s + @,
sin /1 e, t u(t) @, g }® 14
5T — @]
x (1) x(s) 0c
cosh a, tul(t) ¥ g > Wg
2 <:;2 ‘
e “ sin @, tult) . bmﬂ o =-a
s+a) + @
o> -a

$‘> oi Laplace Transform
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Property Time Domain s-domain Signal
Signal

Amplitude Ax(r) AX(s)

scaling

Linearity ax (1) zax,(t) aX, (5) £ a X,(5)

Time d x(0) X (5)- x(0)

differentiation | 4:

] n et d{t—l) x':f]
d?xfr},uﬁm S”X(s)—tz-ls F;=o
n=1,213, ...

Property Time Domain s-domain Signal
Signal
Time x(¢) dt sy [[x@at
integration f f} + f

[t [x@ (@), X6

&

wheren=123, ...
Frequency =" x(r)
shifting
Time shifting | x(r=a)
Frequency
differentiation

5 d
(-1) L (s)
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Property Time Domain s-domain Signal
Signal
Frequency 1 > X(s) ds
integration t X0) f
Time scaling | x(ar) 1y 5]
al la
Periodicity x(t+ nT)

1 r .
= J; x (t)e ™ dt

where, x,(1)is one period of x(r)

Initial value Ili_r_r% x(t) = x(0) "I.“c,g Xi(s)
Theorem
Final value !imﬂ;(r}= xc) lim s X (s) 0
theorem o
Convolution x, (1) *x,(¢) X, (5)X.(5) L
theorem =J"'3¢- X, () x, (= \)dA

Key Points

« The convolution theorem of Lapl
transform of convolution of t

product of the Laplace tra

Ime-domain signals is given by the
e individual signals.

ﬁ@orm says that Laplace
t

ical complex frequencies at which a
extreme value zero and infinity

« The zeros and poles are i
rational function of a @
respectively. .

Fourier Series & Fouri
2

nsform
Fourier Theore

Any arbitr ntifious-time signal x(t), which is periodic with a fundamental
period expressed as a series of harmonically related sinusoids whose

frequenciesw@re multiples of fundamental frequency or first harmonic. In other
words? periodic function of (t) can be represented by an infinite series of
Sl ids called the Fourier Series.

The periodic waveform is expressed in the form of Fourier series, while a non-
periodic waveform may be expressed by the Fourier transform.

The different forms of the Fourier series are given as follows.
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(i) Trigonometric Fourier series

(ii) Complex exponential Fourier series
(iii) Polar or harmonic form Fourier series.
Trigonometric Fourier Series

Any arbitrary periodic function x(t) with fundamental period To can be e e

as follows.

x(t) =a, +ian cosna,t + b, sinnet| ... (i) Q

n=1
4
f signal x(t). Here,
ents ao, an, and b, are

This is called the trigopnometric Fourier series represen
wo = 21/ To is the fundamental frequency of x(t), a
referred to as the trigonometric continuous-ti

coefficients. The coefficients are calculated
Fourier Series Coefficient @

a
o
Il

>
3
&£
~
~
=
il

i), it is clear that coefficient ao represents the average or mean
val erred to as the dc component) of signal x(t).

In general, the limit of integration is any period of the signal, and so the limits can
be from (t1 to t2 + To), where t; is any time instant.

Trigonometric Fourier Series Coefficients for Symmetrical Signals
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If the periodic signal x(t) possesses some symmetry, then the continuous-time
Fourier series (CTFS) coefficients become easy to obtain. The various types of
symmetry and simplification of Fourier series coefficients are disused below.

Consider the Fourier series representation of a periodic signal x(t) defined in the
equation.

() x(t) =a, + i a, cosney,t + b, sinnet
n=1

where a, = L j x(t)dt
TU Ta Q
a, = 2 j X (t)cosnm,tdt
T, 1 @ .

2 ,
b, = = [ x(t)sinne,t dt

0T,

Even Symmetry: x(t) = x(-t) O

If x(t) is an even function, then p Cct(tWsinwot is odd, and integration in

equation (iv) becomes zero. Th = @for all n, and the Fourier series
representation expressed as

‘%} =a, + i a, cosnoyt
n=1

where, - x(t)dt
T, 70
4 (T2
a, = T X (t) cosnao,tdt
For le, the signal x(t) shown below figure has even symmetry, so b, =0,
an Fourier series expansion of x(t) is given as
x(t) = B @ cos et + 2 3;"°t o 282 5;’)°t s
2 = (3) (5)
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x(t)

A

v
-~

=2T. =T 0

Waveform with even symmetry O

The trigonometric Fourier series representation of even signal@ins cosine
terms only. The constant ap may or may not be zero.

*
0dd Symmetry: x(t) = —x(-t) @

If x(t) is an odd function, then product x(t) cos Is0®odd and integration in

equation (iii) becomes zero i.e. an = 0 for all n, Al8o, a?’= 0 because an odd
symmetric function has a zero-average val Q s

N| =
-
N
-

ourier series representation
is expressed as

g XN
x(t) = b, sinnot

o/2 .
where, b, s sinne,tdt
For example, the si aI%own in below figure is odd symmetric, so an=ag =
0, and the Fourie s expansion of x(t) is given as
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[#4]

x(t) = _":{sinmht—
n

sin3em,t  sin5;t sin7et
— + — - T e
(3) (5) (7)

(k)

AG ANV

r| =

T
2

Waveform with odd symmetry QO
Fourier Sine Series

2
The Fourier Sine series can be written as @

o0

5(x) = by sinx + bysin2x + bysindr 4« =

1
B
-

. 0dd S(-x)=-S(x); (iii): S(0) = S()=0
fp@m S(x) the number bk that multiplies sin(kx).

o Our first step is tq comp
¢
Suppose S(x)=3 bn sin(\&ﬁllply both sides by sin(kx). Integrate from 0 to Tt in

o (i): Periodic S(x +2m)=S(X);

Sine Series in equation (2

\ 4
x

0l
b,ainxsinkzdz+---+/ bysinkx sinkxdzx +---
0

ight side, all integrals are zero except for n = k. Here the property of
ogonality” will dominate. The sines make 90° angles in function space
hen their inner products are integrals from 0 to .
« Orthogonality for sine Series

Condition for Orthogonality:
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w
/ sinne sinkrxde =0 f n#£k
0

« Zero comes quickly if we integrate the term cos(mx) from 0
to 1. = of" cos(mx) dx = 0-0=0.
« Integrating cos(mx) with m = n-k and m = n + k proves the ortho 0

the sines.
« The exception is when n = k. Then we are integrating sinz(kx@— /2

cos(2kx) Q
/'sink smkrdx—/'ldx—/'lcm X
B sian 'Tad't 2@‘2‘

2 w

by = —/ S(x)sinkrdr = 1/‘ Sz )din g dr.
© Jo T J =

______ . O

« Notice that S(x)sin(kx is evefiy(equal integrals from -1 to 0 and from 0 to

).
« Wewill immediatsly ln@he most important example of a Fourier sine

series. S(x) is ap O re wave with SW(x) = 1 for O<x<t. It is an odd

function with pe that vanishes at x=0 and x= .
EW(x) =1
= 0 2 — 9 2“0 r

Exa
As given above, finding the Fourier sine coefficients bk of the square wave SW(x).
Solution:

For k =1,2,...using the formula of sine coefficient with S(x)=1 between 0 and Tt
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: 4
b.,=3/ sinkxdr.zg[
T Jo

b

—coskz'_? 202020

k 0 w 21

« Then even-numbered coefficients bk are all zero because cos(2km) =
cos(0) = 1.

« The odd-numbered coefficients bk =4/mtk decrease at the rate 1/k.

« We will see that same 1/k decay rate for all functions formed from smo
pieces and jumps. Put those coefficients 4/mik and zero into the F@ur

sine series for SW(x).
4 [smz sm3z sindzr si O
Square wave SW(z)=— 4 + + —ee
wl 1 3 5
o Gosine S )
Fourier Cosine Series

The cosine series applies to even functions with 8Gx)=@(x) as

% 24(x) 26(z — 2x)
Up-down UD(x)

f

= &)
C(z)=m+a;c&z+@m2r@m+ a,, Cos nr

. —% 0 w o
~28(z + ) —2(x — )
Cosin riod 21t shown as above in figure two even functions, the repeating
ra ), and the up-down train UD(x) of delta functions.

« That sawtooth ramp RR is the integral of the square wave. The delta
functions in UD give the derivative of the square wave. RR and UD will be
valuable examples, one smoother than SW and one less smooth.

« First, we find formulas for the cosine coefficients ag and ax. The constant
term ag is the average value of the function C(x):
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ay — Average ao=%/o C(I)d.’t=2l’r/-'C(I)dI.

« We will integrate the cosine series from 0 to 1. On the right side, the
integral of ag=aom (divide both sides by m). All other integrals are zer

" ‘ x
/ cosnrdr = [m"x] =0—-0=10.
0 n Jg :
2 [" 1 [
ay = —f C(r)coskrdr = — / (!(r)mmk:@ ¢
™ .Jo mJ -
| 4 |
« Again the integral over a full period from®it to%g (also 0 to 2m) is just
doubled.
| 4 | | \/ | [ 4 s | I
Orthogonality Relations of Fourier Ser‘

Since from the Fourier Series Re@ion, we concluded that a periodic
Signal it could be written as < : l

1 ¢
ao—I/_Lf(f)d" %

1 rk

a..=E/_Lf(l)cos(nL yt
1 L
b, = T /;Lf(! ’ !

(7.

ition of orthogonality is as follows:
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1 n=m+#0
11.' f.LL cos(nft)cos(mFt)dt=¢ 0 n#m
2 n=m=10

If (cos(nyt)sin(myt)dt =0

1 n=m#0
N R - B
[f_,_sm(n-[f)sm(mrl)d:_{ 0 mim

Proof of the orthogonality relations:

This is just a straightforward calculation using the periodicity c@and cosine
and either (or both) of these two methods:

@ ‘
Emt + e—mt emt _

Method1:usecosat = — and sin at =

Method 2 : Use thetrig identity cos(a)cos( (u +B) + cos{a - B)),
and thesimilartrig identity for cos(u nd sin(a)sin(p)

Energy in Function = Energy in Coefficients

There is also anotherdm quation (the energy identity) that comes from

integrating (F(x))2. Whe uare the Fourier series of F(x) and integrate from
-1t to m, all the “crogs-term${ drop out. The only nonzero integrals come from
Rx

12 and cos2 kx 2 ultiplied by ao?ax? bk2.
« Energy equals the energy in the coefficients.
e« The nd side is like the length squared of a vector, except the vector

right-hand side comes from an infinitely long vector of a’'s and b's.
e lengths are equal, which says that the Fourier transforms from

nction to vector is like an orthogonal matrix.
« Normalized by constants v2mt and v, we have an orthonormal basis in

function space.

Complex Fourier Series
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« In place of separate formulas for ap and ax and bk, we may consider one
formula for all the complex coefficients ck.

« So that the function F(x) will be complex, The Discrete Fourier Transform
will be much simpler when we use N complex exponentials for a vector.

The exponential form of the Fourier series of a periodic signal x(t) with period
Tois defined as

x(t) = i C et

where wo is the fundamental frequency given as wo = 21 /To. T, ntial
Fourier series coefficients cn are calculated from the following réssion

c -t t) e ™ot dt @ ¢
r1_?jx()e

0Ty
« Since co = ap is still the average of F ccause eo = 1.
« The orthogonality of €™ and e** istd @ ecked by integrating.
Orthogonality of '™ and e'*=®
f du-k)‘d.r [l"(‘-*)‘ "
Lo i(n—k) | _ O

Example:

Compute the Fourier seriég,of f(t), where f(t) is the square wave with period 2m.
defined over one pefiod. ¢

=34 0<t<m

The over several periods is shown below.
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Solution:

Computing a Fourier series means computing its Fourier coefficients. We do this
using the integral formulas for the coefficients given with Fourier's theorem in
the previous note. For convenience, we repeat the theorem here.

fy =2+ i{a,, cos(nt) + b sin(nt))

where

w==["gwa, a==[" foycosmar, b==[" f(r®;

By applying these formulas to the above waveform, we o?plit the integrals
into two pieces corresponding to where f(t) is +1 a is -1.
sin(nt) sin(nt)

. @
nw o |_. niw o |y
forn=0 OQ

1 n
%=;£Jmm=u‘

thus fornz0;

0

gy =

Likewise

: 1o 1 g7
n(nt) dt = ;];H—sm[ni}dr—l—;]; sin(nt) df

cos(nt)|”

_ 1 — cos(—nm) _ cos(nm) — 1

nm |, ni nit

2 (1~ cos(nm) = (1~ (-1)") = { = (ornodd

—IT

0 for n even

We have used the simplification cos ntt = (-1)" to get a nice formula for the
coefficients bn.
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This then gives the Fourier series for f(t)

w©

. _ 4 : Gy
f(t) = lb,,sm(nt) = <sm!+§sm(3l)+ -S—sm(S{) +)

Fourier Transform:

Fourier transform is a transformation technique that transforms non-peri
signals from the continuous-time domain to the corresponding frequen

domain. The Fourier transform of a continuous-time non-periodic si is
defined as
X(jo)=F[x(t)]=[_x(t)e”dt Q
&s..
where X(jw) is the frequency domain representatio nal x(t), and F
denotes the Fourier transformation. The variabl 'is radian frequency in

rad/sec. Sometimes X(jw) is also written as X(

If the frequency is represented in termrequency f (in Hz), then the

above equation is written as

X (jf)=[_x(t)e*"dt c

Note: ¢
The signal x(t) and Fo§r transform X(jw) are said to form a Fourier
transform pair d a
X (t)e— @)
Exi of Fourier Transform:

A function x(t) has a unique Fourier transform if the following conditions are
satisfied, which are also referred to as Dirichlet Conditions:

Dirichlet Conditions:

(i) is absolutely integrable. That is,
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[ (g)]dt <=
(i) x(t) has a finite number of maxima and minima and a finite number of

discontinuities within any finite interval.

The above conditions are only sufficient conditions but not necessary for th
signal to be Fourier transformable. For example, the signals u(t),r(t), and
(wot) are not absolutely integrable but still possess a Fourier transfor

Magnitude and Phase Spectrum:

The Fourier transform X(jw) of a signal x(t) is, in general, the c@( form that

can be expressed as
“)
ctrum of x(t), and the plot

X(je)=|X(jo) |X(je)
The plot of |X(jw)| versus w is called the ma nr@
X(ja)'

of versus w is called the phase s he amplitude (magnitude) and
phase spectra are together called Fouriégspectrum, which is nothing but the
frequency response of X(jw) for r y range

—0 @ W 0
L 4

Inverse Fourier Transf

The inverse Fourjer Siansform of X(jw) is given as

1

) e'“da .

This meth f calculating the inverse Fourier transform seems difficult as is

invo tegration. There is another method to obtain inverse Fourier transform
us artial fraction. Let a rational Fourier transform is given as
- N{je)
9" 55)

X(jw) can be expressed as a ratio of two factorized polynomials in jw as shown
below.
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(jo+2,)(jo +2)(jo + Z3) e

X(Jo)= Ga+p)jo+p)ja+p)

By partial fraction expansion technique, the above can be expressed as shown

below.

X(Jo)= kK _, % +,k’ :
Jo+p, Jo+p, Jo+p,

where k1 ko

or repeater or complex.

Properties of Fourier Transform: O

There are some properties of continuous-time Fourier
on the transformation of signals, which are listed b

...... kn calculated depending on whether the roots are rea® ple

a. Linearity:
The linearity property states that the line rnation of signals in the time
domain is equivalent to a linear combirﬁ their Fourier transform in the

frequency domain. Q
%, (£) £ X, (Jo) 0
*

X, (f)e—— X, (jo)

ax, (E)+ bx, (t)—F— aX W X, (Jjw)
whereaandb a arBitr y constants.
b. Time Shift

ing property states that the delay of to in the time domain is
- fod
to multiplication of ¢ with its Fourier transform. It implies that the

de spectrum of the original signal does not change, but the phase
spectrum is modified by a factor of -jwto.

X(tje—— X (o)

X(t—t,)¢—— X (jo)e™ '™
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c. Conjugation and Conjugate Symmetry:
If, x(t)+—L— X (jo), then x" (t)+—L— X |[-ja)
If x(t) is real, then X (—je)=X"(ja)

d. Time Scaling

Time scaling property states that the time compression of a signal in th
domain is equivalent to expansion in the Frequency domain and vice-ve

x(t) L X jo) O
Foo1 e a=0 Q
x[at}-i—:-HX[_JEJ, E .

e. Differentiation in Time-Domain

The time differentiation property states thagdifferamtiation in the time domain is
equivalent to the multiplication of jw in @ ency domain.

if, x(t) e X jo) Q
then, dx—m-:;:-jmx{jm}

dt :
provided the derivati‘e dt “exists at all time t.
d'x(t) . . .
In general, 7 ¢ X\ Ja)

*

f. Integratio omain:

. 7 X(je)

<—>j—m+ﬂ.¥{ﬂ}5{m}

g. Differentiation in Frequency Domain:

The differentiation of Fourier transform in the frequency domain is equivalent to
the multiplication of time-domain signal with -jt .

Differentiation in Frequency Domain
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x(t)e—L—X(jo)
F dX|ja)
b (&) i o
" dX{jﬂ}

£'x () (7) =2

h. Frequency Shifting:

The frequency-shifting property states that a shift of wo in frequen@
. . . L. el
equivalent to multiplying the time domain signal by

x(t)e—— X jo) 'S
e™x(t)e—"— X[j(o-a,)]

i. Duality Property:

x(t)———X{ jo) @
X (t)e———27x(—jo) Q
j- Time Convolution: O

0'si in the time domain is equivalent to the

Convolution between
multiplication of Fourier

x (t)e———x |

X, (t)e———

X, (£) X (Jo)X; (Jeo)
cy Convolution:

Convolution in the frequency domain (with a normalization factor of 2m) is
equivalent to multiplying the signals in the time domain.
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X (t) ==X, (jo)

X (t) =X, (jo)

5, (£) %, (£) == 22 [X, (J2) = X, (jo)]
I. Area Under x(t):

If X(jw) is the Fourier transform of x(t), then,

X(0) =" x(t)dt QO

that is, the area under a time function x(t) is equal to th e q its Fourier
transform evaluated at w=0

m. Area Under X(jw):

If X(jw) is the Fourier transform of x(t), theO
x{D}=%I_:X{jm}dm K
[ X(jo)do = 22x(0) Q

n. Parseval's Energy 1!0%0

If X(jw) is the Fourier trafgf of an energy signal x(t). then

rm & Sampling Theorem

Sampling Theorem

The sampling process is usually described in the time domain. In this process, an
analog signal is converted into a corresponding sequence of samples that are

usually spaced uniformly in time. Consider an arbitrary signal x(t) of finite energy,
which is specified for all time as shown in figure 1(a).
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Suppose that we sample the signal x(t) instantaneously and at a uniform rate,
once every Ts second, as shown in figure 1(b). Consequently, we obtain an
infinite sequence of samples spaced Ts seconds apart and denoted by {x(NTS)},
where n takes on all possible integer values.

Thus, we define the following terms:

1. Sampling Period: The time interval between two consecutive samp
referred to as the sampling period. In figure 1(b), Ts is the sampli

2. Sampling Rate: The reciprocal of the sampling period is refert
sampling rate, i.e.

fs=1/Ts Q

band-limited signal of finite energy, which has no frequency components
higher than W Hertz, is completely described by specifying the values of
the signal at instants of time separated by 1/2W seconds.
« A band-limited signal of the finite energy, which has no frequency
components higher than W Hertz, may be completely recovered from a
knowledge of its samples taken at the rate of 2W samples per second.
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Aliasing & Anti-aliasing

« Aliasing is such an effect of violating the Nyquist-Shannon sampling
theory. During sampling the baseband spectrum of the sampled signal is
mirrored to every multifold of the sampling frequency. These mirrored
spectra are called alias.

« The easiest way to prevent aliasing is the application of a steep-slop
low-pass filter with half the sampling frequency before the conversi
Aliasing can be avoided by keeping Fs>2Fmax.

« Since the sampling rate for an analog signal must be at least fwe@,tifaes as
high as the highest frequency in the analog signal in order to
aliasing. So in order to avoid this, the analogue signal is ered by a
low pass filter prior to being sampled, and this filter is called an anti-
aliasing filter. Sometimes the reconstruction filter after a al-to-
analogue converter is also called an anti-aliasin

Explanation of Sampling Theorem

Consider a message signal m(t) bandlimite '
M(f) = 0 For Ifl = W g
Then, the sampling frequency fs%t reconstruct the bandlimited

waveform without any error, is

Fs22W
*
Nyquist Rate
Nyquist rate is défi a&th€ minimum sampling frequency allowed to
reconstruct imited waveform without error, i.e.
fn = min{fs
Wh is the message signal bandwidth, and fs is the sampling frequency.

Nyquist Interval

The reciprocal of Nyquist rate is called the Nyquist interval (measured in
seconds), i.e.
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f, 2W

Where fn is the Nyquist rate, and W is the message signal bandwidth.

The Z - Transform of a discrete-time signal x[n] is defined as

—+00

X(z)'= Z z[n].z27"
X

« The discrete-time Fourier Transform (DTFT) is o I:ﬁ evaluating Z-
Transform at z = el®

o The z-transform defined above has both sj sufmation. It is called
bilateral or both sided Z-transform.

Unilateral (one-sided) z-transform O
« The unilateral z-transform@ce x[n] is defined as
X(z)= Zx (n)z™"
n=>0

*
Region of Convergence

« ROCis th z-transform converges. It is clear that z-transform
isani er series. The series is not convergent for all values of z.
Significan

C gives an idea about values of z for which z-transform can be
ulated.

. OC can be used to determine the causality of the system.

o ROC can be used to determine the stability of the system.

Summary of ROC of Discrete-Time Signals for the sequences
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Sequence

ROC

Finite, right sided (causal)

Entire z-plane exceptz=10

Finite left sided (anti-causal)

Entire z- plane exceptz=x

Finite, two sided {non-causal)

Entire z-plane exceptz=0andz=w

Infinite, right sided (causal)

Exterior of circle of radius ry, where |z > 1

Infinite left sided (anti-causal)

Interior of circle of radius ry, where |z| <13

www.jkchrome.com

) . The area between two circles of radius r; and r
Infinite, two sided (non-causal) )
where,r: > nandn < |2/ 12, (i e., 2| > 1y and |z] < 13)

O

Characteristic Families of Signals and Corresponding ROC

Signal ROC in z-plane
Finite Duration Signals @
x(n) N
nghlsidod /y // Nexcapl z=0
(or causal) ]I 7 Y - 7
| TS G
0 n /‘ /@
x(n) N Entire z-plane
Lﬁﬁsw s ,/ / ’ .xng-
(or anti-causal) /é;' P
! - &
e —- o 77 //,u
x(n)
Two sided » Entir ane
(or n“:\-ca:td) ¢ 7 e /g ;L.:pffg 0
and z=rc=
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(or causal) [h‘.“ )

Signal | ROC in z-plane
Infinite Duration Signals
Signal ROC in z-plane
x(n)
Right sided !

w
7// & /{{hu
é[ %// lzi>ry

%
Left sided x(n) z -plane
(or anti-causal)
“sn ! I I X u
0 n 'Z‘< ]
v

Twoddodﬂn)
{or non-causal)
"'r”lhr";}

2 (n)}; Y(z) =z (y (n))

Property z-Transform
Linearity ?1 13‘11( ﬂ) aX (z)+a,X,(z)
$ 2 "X (z)+zm:
for | x(n—m) x (—i}z{m{'
Shift] x(n + m) z’ﬁi(z):i
i=0
x (1 }zm'i
x(n) for | x(n —m) X (z)
alln X(n+m) z"X(z)
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Property Discrete Time Signal z-Transform
Multiplication by n= -
(or differentiation in n™x(n) [—zi] X(z)
z-domain)
Scaling in z-domain

5 a“x(n] X( a'lz}
(or multiplication by a®)
Time reversal x(-n) X (1'1}
Conjugation x'(n) }{'(z'}

x,(n) x;(n) *

Convolution 2(z)

Property z-Transform
Correlation
X(z)Y(z?)
Initial value
Final value
Com volution 3 ()X,
2mj T :
th x,(n)x,(n) p
(2]
v}'

. 1 1) -
Parseval’s relation le (n)x,(n)=— Xl{z}xll—.JE 'dz

Impulse Response and Location of Poles
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Transfer Location of Poles in z-
Impulse Response h(n)
Function
z
h(n)=a"u(n),0<a <l H(z)-z_a
hin)y ROCis|z|>a
' Poleatz=a
1T, =
S Since 0 <a <1, the polez
Z‘ol h(n)|<ac; stable a. lies inside the unit gffcle.
%
system The ROC contains the
circle. c ; L 2
Transfer Loca s inz- |
Impulse Response h(n)
Function R

h(n)=(-a) u(n);0<-al<l
h(ﬂ”n.

Since 0 <|-a|< 1, the pole z

= -a. lies inside the unit
circle. The ROC contains

the unit circle.

system
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Transfer Location of Poles in z-
Impulse Response h(n)
Function plane and ROC
hin)=a"u(n)a>1 H(Z)=ﬁ
h(n) 3 ROCis|z|>a
. [” Poleatz=a
rrl'l'll” el

Since a > 1, the pole z=+a,

-t
Zl h(n)}==c; unstable lies outside the unit circle. O
awd

The ROC does not contai
system R
) the unit circle.

Transfer Location of B
Impulse Response h(n)

Function
hin)==-a™(n);|-al>1 H(z)
"y .

! Since 0 <j-a| > 1, the pole z

b L 2 =-a, lies outside the unit
Zl h{n)}= oc; unstable circle. The ROC does not
o=0

contain the unit circle.
system L 4
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Transfer Location of Poles in
Impulse Response h(n)
Function z-plane and ROC
b3 7
H (;):i Unit 7/
h(an)=au(n);a>0 = cn?
: ROC s |z| >
hin i
'1JIHHIH o
, | Poleatz=1
- n

Impulse Response h(n)

= on the unit cir

> Ih(n)l=mc;

P The R s got

unstable system it
tion of Poles in z-

Transfer
F

h(n]:a(—l)"u(n);a >0

(ie.,ais positive)

hinly

- unstable

az
ROCis |z| >

1
Poleatz=-
1

The pole z=-1, lies on the
unit circle. The ROC does

not contain the unit circle.
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Transfer Location of Poles in z-
Impulse Response h(n)
Function plane and ROC
az
h(n)=na"u(n);0<a<l H(z)=(z_a):
"0: ROCis|zi> 1
. | TwoPoleatz=a
n
__ Since 0 <a < 1, the two
glh(n.”‘“’. poles at z=a, lie insi O
' the unit circle. Th
stable system
contains th
Impulse Response h(n) Transfer Function

h(n)=n(-a)"u(n);0<4-al<! H(z)=—=

hin

Since 0 <-al < 1. the two

| === : ¢ poles at z = -a_lie inside the
; stabl
28} ioogatabie unit circle. The ROC
system 4 contains the unit circle.
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Transfer Location of Poles in z-
Impulse Response h(n)
Function plane and ROC
hin)=na"u(n);a>1 H(z)= 1
" (z—a)
hin)
ROCis|zl>a

3 Ih(n)i= =

Two Poleatz=a

Since a > 1, the two poles

at z = a_ lie outside the unit

cirele. The ROC does not
contain the unit circle. Q

unstable system
Transfer Location of P
Impulse Response h(n)
Function plane an
h(n):n[—a)“n(n);l—a [>1 H(Z) ___i'_
‘ i) (z+a)
| ROC is |z| > [-a| u
Two Polg at
< ' Since |-al > 1. the two

Slh(a)i=

unstable system

polesatz=-a, lie
outside the unit circle.
The ROC does not

contain the unit circle.
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Transfer Location of Poles in z-plane
Impulse Response h(n)
Function and ROC
S {n)=mmn) H(z)=- zn‘ %7
hin) (z-1 %
', ROCislzi > 1 — - -
1l sese Two Poleatz=1
atllll--_ [~ | 47

The two pole z= 1, lie on the

-

hin)|=2c;
gl (n)|=oc; unit circle. The ROC does O
unstable system

not contain the unit circle.e

Transfer Location of P,
Function

Impulse Response h(n)

h(n]=n(-l)gu(n);|-—n[>l

Hix)e——r

(z+1)

h(n)
ROCisjzi> 1

Two Pole at z o
& 7
0 The two pole z=-1, lie

on the unit circle. The

il hin)|=oc; * ROC does not contain
| =0

the unit circle.
unstable system
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Impaise Re h(a) T DO Location of Poles in z-
¢ Response hin ransfer Function
e plane and ROC
H
(z) »

hin)=1"cosomu(n).0<r <]

Q(N7

o
~

s
f:lh(n)K::-;

stable system

_z{z-rcose,)
(z-rcos®, )

jrsin o)

(z-rcosw,
+ jrsn ;)

ROCisizi>r

A pair of conjugate poles at

2 =P =r1cos0, + rsinw,

z2=P, =rcosm, - gsn®,

-

Unk 7

v
.
/
’

¥ ke
7

.....

Since 0 <r<1, the

conjugate pole pairs li
inside the unit ci
ROC contains th

circle

Impulse Response h(n)

Transfer Function

h({n)=cos@mu(n)

now ... ST

fih(n)#w;

unstable s

H(z)

_z(z—c0s )
e

Apair of conjugate
poles on unit circle at,
z=P =cos0, +jsn O,

z=P, =cos®, - jsin@,

ROC7/7
The conjugate pole
pairs lie on the unit
circle. The ROC does
not contain the unit

circle.
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