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Basics of Signals & Systems 

Properties of Signals 

A signal can be classified as periodic or aperiodic; discrete or continuous time; 
discrete of continuous-valued; or as a power or energy signal. The following 
defines each of these terms. In addition, the signal-to-noise ratio of a signal 
corrupted by noise is defined. 

Periodic / Aperiodic: 

A periodic signal repeats itself at regular intervals. In general, any signal x(t) for 
which 

x(t) = x(t+T) 

for all t is said to be periodic. 

The fundamental period of the signal is the minimum positive, non-zero value 
of T for which above equation is satisfied. If a signal is not periodic, then it 
is aperiodic. 

Symmetric / Asymmetric: 

There are two types of signal symmetry: odd and even. A signal x(t) has odd 
symmetry if and only if x(-t) = -x(t) for all t. It has even symmetry if and only if x(-
t) = x(t).

 Continuous and Discrete Signals and Systems 

A continuous signal is a mathematical function of an independent variable, which 
represents a set of real numbers. It is required that signals are uniquely defined 
in except for a finite number of points. 
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• A continuous time signal is one which is defined for all values of time. A 
continuous time signal does not need to be continuous (in the 
mathematical sense) at all points in time. A continuous-time signal 
contains values for all real numbers along the X-axis. It is denoted by x(t). 

• Basically, the Signals are detectable quantities which are used to convey 
some information about time-varying physical phenomena. some 
examples of signals are human speech, temperature, pressure, and stock 
prices. 

• Electrical signals, normally expressed in the form of voltage or current 
waveforms, they are some of the easiest signals to generate and process. 

Example: A rectangular wave is discontinuous at several points but it is 
continuous time signal. 

 

Discrete / Continuous-Time Signals: 

A continuous time signal is defined for all values of t. A discrete time signal is 
only defined for discrete values of t = ..., t-1, t0, t1, ..., tn, tn+1, tn+2, ... It is uncommon 
for the spacing between tn and tn+1 to change with n. The spacing is most often 
some constant value referred to as the sampling rate, 

Ts = tn+1 - tn. 

It is convenient to express discrete time signals as x(nTs)=x[n]. 

That is, if x(t) is a continuous-time signal, then x[n] can be considered as 
the nth sample of x(t). 

Sampling of a continuous-time signal x(t) to yield the discrete-time signal x[n] is 
an important step in the process of digitizing a signal. 
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Energy and Power Signal: 

When the strength of a signal is measured, it is usually the signal power or signal 
energy that is of interest. 

The signal power of x(t) is defined as                          

 

and the signal energy as 

 

• A signal for which Px is finite and non-zero is known as a power signal. 
• A signal for which Ex is finite and non-zero is known as an energy signal. 
• Px is also known as the mean-square value of the signal. 
• Signal power is often expressed in the units of decibels (dB). 
• The decibel is defined as 

   

• where P0 is a reference power level, usually equal to one squared SI unit of 
the signal. 

• For example if the signal is a voltage then the P0 is equal to one square 
Volt. 

• A Signal can be Energy Signal or a Power Signal but it can not be both. 
Also a signal can be neither a Energy nor a Power Signal. 

• As an example, the sinusoidal test signal of amplitude A, 

       x(t)=Asin(ωt) 

has energy Ex that tends to infinity and power , 
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       or in decibels (dB):  20log(A)-3 

       The signal is thus a power signal. 

Signal to Noise Ratio: 

Any measurement of a signal necessarily contains some random noise in 
addition to the signal. In the case of additive noise, the measurement is 

x(t)=s(t)+n(t) 

where s(t) is the signal component and n(t) is the noise component. 

The signal to noise ratio is defined as 

     

 or in decibels, 

  

The signal to noise ratio is an indication of how much noise is contained in a 
measurement. 

Standard Continuous Time Signals 

• Impulse Signal 

    

where ∞ is the height of impulse signal having unit area.                                         

and  
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When A = 1 (unit impulse Area)  

 

• Step Signal 

 

Unit Step Signal  if A =1,  

 

 

• Ramp Signal 

      

   Unit Ramp Signal (A=1) 
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• Parabolic Signal 

     

   Unit Parabolic Signal when A = 1, 

     

 

• Unit Pulse Signal 
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 Sinusoidal Signal 

• Co-sinusoidal Signal: 

     

    Where, ω0 is the angular frequency in rad/sec 

    f0 = frequency in cycle/sec or Hz 

    T = time period in second 

  When 

   

When ϕ = positive,  

 

When ϕ = negative, 

  

Sinusoidal Signal: 

     

Where, 
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Angular frequency in red/sec 

    f0 = frequency in cycle/sec or Hz 

    T = time period in second 

    When  

    When ϕ = positive,  

   When ϕ = negative,  

 

    Exponential Signal:  

• Real Exponential Signal 

     where, A and b are real. 
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• Complex Exponential signal 

     

    The complex exponential signal can be represented in a complex plane by a 
rotating vector, which rotates with a constant angular velocity of ω0 red/sec. 

 

• Exponentially Rising/Decaying Sinusoidal Signal 

     

 

• Triangular Pulse Signal 
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• Signum Signal 

     

 

• SinC Signal 
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• Gaussian Signal 

     

 

    Important points: 

• The sinusoidal and complex exponential signals are always periodic. 
• The sum of two periodic signals is also periodic if the ratio of their 

fundamental periods is a rational number. 
• Ideally, an impulse signal is a signal with infinite magnitude and zero 

duration. 
• Practically, an impulse signal is a signal with large magnitude and short 

duration. 
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    Classification of Continuous Time Signal: The continuous time signal can be 
classified as 

1. Deterministic and Non-deterministic Signals: 
o The signal that can be completely specified by a mathematical 

equation is called a deterministic signal. The step, ramp, exponential 
and sinusoidal signals are examples of deterministic signals. 

o The signal whose characteristics are random in nature is called a 
non-deterministic signal. The noise signal from various sources like 
electronic amplifiers, oscillator etc., are examples of non-
deterministic signals. 

o Periodic and Non-periodic Signals 
o A periodic signal will have a definite pattern that repeats again and 

again over a certain period of time. 

      x(t+T) = x(t) 

   2. Symmetric (even) and Anti-symmetric (odd) Signals 

     When a signal exhibits symmetry with respect to t = 0, then it is called an even 
signal. 

      x(-t) = x(t) 

 

When a signal exhibits anti-symmetry with respect to t = 0, then it is called an odd 
signal. 

 x(-t) = -x(t) 

Let  
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Where, 

   

even part of 

 

odd part of  

      

 

Discrete-Time Signals  

 The discrete signal is a function of a discrete independent variable. In a discrete 
time signal, the value of discrete time signal and the independent variable time 
are discrete. The digital signal is same as discrete signal except that the 
magnitude of the signal is quantized. Basically, discrete time signals can be 
obtained by sampling a continuous-time signal. It is denoted as x(n). 
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   Standard Discrete Time Signals 

• Digital Impulse Signal or Unit Sample Sequence 

      Impulse signal, 

 

     

• Unit Step Signal 
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• Ramp Signal 

        Ramp signal,  

  

        

• Exponential Signal 

     Exponential Signal,  
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• Discrete Time Sinusoidal Signal 

     

 

• A discrete-time sinusoid is periodic only if its frequency is a rational 
number. 

• Discrete-time sinusoids whose frequencies are separated by an integer 
multiple of 2π are identical. 

Operations in Continuous Time Signals:  

Periodic & Non-Periodic Signals: 

• A signal is a periodic signal if it completes a pattern within a measurable 
time frame, called a period and repeats that pattern over identical 
subsequent periods. 

• The period is the smallest value of T satisfying g(t + T) = g(t) for all t. The 
period is defined so because if g(t + T) = g(t) for all t, it can be verified 
that g(t + T') = g(t) for all t where T' = 2T, 3T, 4T, ... In essence, it's the 
smallest amount of time it takes for the function to repeat itself. If the 
period of a function is finite, the function is called "periodic". 

• Functions that never repeat themselves have an infinite period, and are 
known as "aperiodic functions". 
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Even & Odd Signals: 

A function even function if it is symmetric about the y-axis. While, A signal is odd 
if it is inversely symmetrical about the y-axis. 

Even Signal, f(x) = f(-x) 

Odd Signal, f(x) = - f(-x) 

 

Note: Some functions are neither even nor odd. These functions can be written 
as a sum of even and odd functions. A function f(x) can be expressed in terms of 
sum of an odd function and an even function. 

 

Invertibility and Inverse Systems: 

A system is invertible if distinct inputs results distinct outputs. As shown in the 
figure for the continuous-time case, if a system is invertible, then an inverse 
system exists that, when cascaded with the original system, results an output 
w(t) equal to the input x(t) to the first system. 
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An example of an invertible continuous-time system is y(t) = 2x(t), 

for which the inverse system is w(t) = 1/2 y(t) 

 

Causal System: 

A system is causal if the output depends only on the input at the present time 
and in the past. Such systems are often referred as non anticipative, as the 
system output does not anticipate future values of the input. Similarly, if two 
inputs to a causal system are identical up to some point in time to or no the 
corresponding outputs must also be equal up to this same time. 

y1(t) = 2x(t) + x(t-1) + [x(t)]2  ⇒ Causal Signal  

y1(t) = 2x(t) + x(t-1) + [x(t+2)] ⇒ Non-Causal Signal  

Homogeneity (Scaling): 

A system is said to be homogeneous if, for any input signal X(t), i.e. When the 
input signal is scaled, the output signal is scaled by the same factor. 

 

 Time-Shifting / Time Reversal / Time Scaling: 

 Time-Shifting 

Time Shifting can be understood as shifting the signal in time. When a constant 
is added to the time, we obtain the advanced signal, & when we decrease the 
time, we get the delayed signal. 
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Time Scaling:  

Due to the scaling in time the output Signal may shrink or stretch it depends on 
the numerical value of scaling factor. 

 

Time Inversion: 

Time Inversion referred as flipping the signal about the y-axis. 

 

L.T.I. Systems 

Linear Time-Invariant System: 

Linear time-invariant systems (LTI systems) are a class of systems used 
in signals and systems that are both linear and time-invariant. Linear systems are 
systems whose outputs for a linear combination of inputs are the same as a 
linear combination of individual responses to those inputs. Time-invariant 
systems are systems where the output does not depend on when input was 
applied. These properties make LTI systems easy to represent and understand 
graphically.                               

Linear systems have the property that the output is linearly related to the input. 
Changing the input in a linear way will change the output in the same linear way. 
So if the input x1(t) produces the output y1(t) and the input x2(t) produces the 
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output y2(t), then linear combinations of those inputs will produce linear 
combinations of those outputs. The input {x1(t)+x2(t)} will produce the 
output {y1(t)+y2(t)}. Further, the input {a1x1(t)+a2x2(t)} will produce the 
output {a1y1(t)+a2y2(t)} for some constants a1 and a2. 

In other words, for a system T over time t, composed of 
signals x1(t) and x2(t) with outputs y1(t) and y2(t) , 

 

Homogeneity Principle:  

 

Superposition Principle: 

 

Thus, the entirety of an LTI system can be described by a single function called 
its impulse response. This function exists in the time domain of the system. For 
an arbitrary input, the output of an LTI system is the convolution of the input 
signal with the system's impulse response. 

Conversely, the LTI system can also be described by its transfer function. The 
transfer function is the Laplace transform of the impulse response. This 
transformation changes the function from the time domain to the frequency 
domain. This transformation is important because it turns differential 
equations into algebraic equations, and turns convolution into multiplication. 

In the frequency domain, the output is the product of the transfer function with 
the transformed input. The shift from time to frequency is illustrated in the 
following image: 
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Homogeneity, additivity, and shift-invariance may, at first, sound a bit abstract 
but they are very useful. To characterize a shift-invariant linear system, we need 
to measure only one thing: the way 
the system responds to a unit impulse. This response is called the impulse 
response function of the system. Once we’ve measured this function, we can (in 
principle) predict how the system will 
respond to any other possible stimulus. 

Introduction to Convolution 

Because here’s not a single answer to define what is? In “Signals and Systems” 
probably we saw convolution in connection with Linear Time-Invariant 
Systems and the impulse response for such a system. This multitude of 
interpretations and applications is somewhat like the situation with the definite 
integral. 

To pursue the analogy with the integral, in pretty much all applications of the 
integral there is a general method at work: 

• Cut the problem into small pieces where it can be solved approximately. 
• Sum up the solution for the pieces, and pass to a limit. 

Convolution Theorem 

F(g∗f)(s)=Fg(s)Ff(s) 

• In other notation: If f(t)⇔ F(s)  and g(t) ⇔ G(s) then (g∗f)(t)⇔ G(s)F(s) 
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• In words: Convolution in the time domain corresponds to multiplication in 
the frequency domain. 

 

• For the Integral to make sense i.e., to be able to evaluate g(t−x) at points 
outside the interval from 0 to 1, we need to assume that g is periodic. it is 
not the issue the present case, where we assume that f(t) and g(t) are 
defined for all t, so the factors in the integral 

 

Convolution in the Frequency Domain 

• In Frequency Domain convolution theorem states that 

F(g ∗ f)=Fg ·Ff 

• here we have seen that the whole thing is carried out for inverse Fourier 
transform, as follow: 

F−1(g∗f)=F−1g·F−1f 

F(gf)(s)=(Fg∗Ff)(s) 

• Multiplication in the time domain corresponds to convolution in the 
frequency domain. 

     By applying Duality Formula 

     F(Ff)(s)=f(−s) or F(Ff)=f−   without the variable. 

• To derive the identity  F(gf) = Fg∗Ff,  we assume for convenience, h = 
Ff and k = Fg 

then we can write as     F(gf)=k∗h 

• The one thing we know is how to take the Fourier transform of a 
convolution, so, in the present notation, F(k∗h)=(Fk)(Fh). 

         But now       Fk =FFg = g− 
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         and likewise   Fh =FFf = f 

         So F(k∗h)=g−f− =(gf)−, or   gf =F(k∗h)− 

        Now, finally, take the Fourier transform of both sides of this last equation  

        FF identity : F(gf)=F(F(k∗h)−)=k∗h =Fg∗Ff  

Note: Here we are trying to prove F(gf)(s) = (Fg∗Ff)(s) rather 
than F(g∗f)=(Ff)(Fg) Because, it seems more “natural” to multiply signals in the 
time domain and see what effect this has in the frequency domain, so why not 
work with F(fg) directly? But write the integral for F(gf); there’s nothing you can 
do with it to get toward Fg∗Ff.  

There is also often a general method of convolutions: 

• Usually there’s something that has to do 
with smoothing and averaging,understood broadly. 

• You see this in both the continuous case  and the discrete case. 

Some of you who have seen convolution in earlier courses,you’ve probably heard 
the expression “flip and drag” 

Meaning of Flip & Drag: here’s the meaning of Flip & Drag is as follow 

• Fix a value t.The graph of the function g(x−t) has the same shape as g(x) 
but shifted to the right by t. Then forming g(t − x) flips the graph (left-right) 
about the line x = t. 

• If the most interesting or important features of g(x) are near x = 0, e.g., if 
it’s sharply peaked there, then those features are shifted to x = t for the 
function g(t − x) (but there’s the extra “flip” to keep in mind).Multiply  f(x) 
and g(t − x) and integrate with respect to x. 

Averaging 

• I prefer to think of the convolution operation as using one function to 
smooth and average the other. Say g is used to smooth f in g∗f. In many 
common applications g(x) is a positive function, concentrated near 0, with 
total area 1.     
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• Like a sharply peaked Gaussian, for example (stay tuned). Then g(t−x) is 
concentrated near t and still has area 1. For a fixed t, forming the integral 

 

• The last expression is like  a weighted average of the values of f(x) near x 
= t, weighted by the values of (the flipped and shifted) g. That’s the 
averaging part of  the convolution, computing the convolution g∗f at t 
replaces the value f(t) by a weighted average of the values of f near t. 

Smoothing   

• Again take the case of an averaging-type function g(t), as above. At a given 
value of t,( g ∗ f)(t) is a weighted average of values of f near t. 

• Then Move t a little to a point t0. Then (g∗f)(t0) is a weighted average of 
values of f near t0, which will include values of f that entered into the 
average near t. 

• Thus the values of the convolutions (g∗f)(t) and (g∗f)(t0) will likely be 
closer to each other than are the values f(t) and f(t0). That is, (g ∗f)(t) is 
“smoothing” f as t varies — there’s less of a change between values of the 
convolution than between values of f. 

Other identities of Convolution 

It’s not hard to combine the various rules we have and develop an algebra of 
convolutions. Such identities can be of great use — it beats calculating integrals. 
Here’s an assortment. (Lower and uppercase letters are Fourier pairs.) 

• (f ·g)∗(h·k)(t) ⇔ (F ∗G)·(H ∗K)(s) 
• {(f(t)+g(t))·(h(t)+k(t)} ⇔ {[(F + G)∗(H + K)]}(s) 
• f(t)·(g∗h)(t) ⇔ F ∗(G·H)(s) 

Properties of Convolution 

Here we are explaining the properties of convolution in both continuous and 
discrete domain 

• Associative 
• Commutative 
• Distributive properties 
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• As a LTI system is completely specified by its impulse response, we look 
into the conditions on the impulse response for the LTI system to obey 
properties like memory, stability, invertibility, and causality. 

• According to the Convolution theorem in Continuous & Discrete time as 
follow: 

 For Discrete system . 

 

  For Continuous System  

 
     We shall now discuss the important properties of convolution for LTI systems. 

1) Commutative property : 

• In Discrete time: x[n]*h[n] ⇔  h[n]*x[n] 

         Proof: Since we know that y[n] = x[n]*h[n]   

                              

          Let us assume n-k = l    

so, 
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• So it clear from the derived expression that ⇒    x[n]*h[n] ⇔  h[n]*x[n] 
• In Continuous time:  

         Proof 

  

        So x[t]*h[t] ⇔ h[t]*x[t] 

 2. Distributive Property 

     By this Property we will conclude that convolution is distributive over addition. 

• Discrete time:        x[n]{α h1[n] + βh2[n]} = α {x[n] h1[n]}+ β{x[n] h2[n]}        α & 
β are constant. 

• Continuous Time:     x(t){α h1(t) + βh2(t)} = α{x(t)h1(t)} + β {x(t)h2(t)}            α 
& β are constant. 

3. Associative Property 

• Discrete Time  y[n] = x[n]*h[n]*g[n] 

        x[n] * h1[n] * h2[n] = x[n] * (h1[n] * h2[n]) 
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• In Continuous Time: 

       [x(t) * h1(t)] * h2(t) = x(t) * [h1(t) * h2(t)] 

       If systems are connected in cascade: 

        

∴ Overall impulse response of the system is: 

       

 4. Invertibility 

 A system is said to be invertible if there exist an inverse system which when 
connected in series with the original system produces an output identical to input 
. 

     (x*δ)[n]= x[n] 

     (x*h*h-1)[n]= x[n] 

     (h*h-1)[n]= (δ)[n] 

5. Causality 

• Discrete Time 

                    

        

• Continuous Time  
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 6. Stability 

• Discrete Time 

               

• Continuous Time 

               

Laplace Transform 

The Laplace Transform is a very important tool to analyse any electrical 
containing by which we can convert the Integral-Differential Equation in Algebraic 
by converting the given situation in Time Domain to Frequency 
Domain                          

•   
• is also called bilateral or two-sided Laplace transform. 
• If x(t) is defined for t≥0, [i.e., if x(t) is causal], then 

   

is also called unilateral or one-sided Laplace transform. 

Below we have listed the Following advantage of accepting Laplace transform: 

• Analysis of general R-L-C circuits become easier. 
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• Natural and Forced response can be easily analyzed. 
• The circuit can be analyzed with impedances. 
• Analysis of stability can be done easiest way. 

Statement of Laplace Transform 

• The direct Laplace transform or the Laplace integral of a function f(t) 
defined for 0 ≤ t < ∞ is the ordinary calculus integration problem for a 
given function f(t). 

• Its Laplace transform is the function, denoted F(s) = L{f}(s), defined by 

 

• A causal signal x(t) is said to be of exponential order if a real, positive 
constant σ (where σ is the real part of s) exists such that the function, 
e- σt|X(t)| approaches zero as t approaches infinity. 

• For a causal signal, if lim e-σt|x(t)|=0,  for σ > σc and if lim e-σt|x(t)|=∞ for σ > 
σc then σc is called the abscissa of convergence, (where σc is a point on real 
axis in s-plane). 

• The value of s for which the integral 

  

converges is called Region of Convergence (ROC). 

• For a causal signal, the ROC includes all points on the s-plane to the right 
of abscissa of convergence. 

• For an anti-causal signal, the ROC includes all points on the s-plane to the 
left of the abscissa of convergence. 

• For a two-sided signal, the ROC includes all points on the s-plane in the 
region in between two abscissae of convergence. 

Properties of the ROC 

The region of convergence has the following properties 

• ROC consists of strips parallel to the jω-axis in the s-plane. 
• ROC does not contain any poles. 
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• If x(t) is a finite duration signal, x(t) ≠ 0, t1 < t < t2 and is absolutely 
integrable, the ROC is the entire s-plane. 

• If x(t) is a right sided signal, x(t) = 0, t1 < t0, the ROC is of the form R{s} > 
max {R{pk}} 

• If x(t) is a left sided signal x(t) = 0, t1 > t0, the ROC is of the form R{s} > min 
{R{pk}} 

• If x(t) is a double-sided signal, the ROC is of the form p1 < R{s} < p2 
• If the ROC includes the jω-axis. Fourier transform exists and the system is 

stable. 

Inverse Laplace Transform 

• It is the process of finding x(t) given X(s) 

X(t) = L-1{X(s)} 

      There are two methods to obtain the inverse Laplace transform. 

• Inversion using Complex Line Integral 

 

• Inversion of Laplace Using Standard Laplace Transform Table. 

Note A: Derivatives in t → Multiplication by s. 

 

 B: Multiplication by t → Derivatives in s. 
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Laplace Transform of Some Standard Signals 
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 Some Standard Laplace Transform Pairs 
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Properties of Laplace Transform 
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Key Points 

• The convolution theorem of Laplace transform says that Laplace 
transform of convolution of two time-domain signals is given by the 
product of the Laplace transform of the individual signals. 

• The zeros and poles are two critical complex frequencies at which a 
rational function of a takes two extreme value zero and infinity 
respectively. 

Fourier Series & Fourier Transform 

Fourier Theorem 

Any arbitrary continuous-time signal x(t), which is periodic with a fundamental 
period To, can be expressed as a series of harmonically related sinusoids whose 
frequencies are multiples of fundamental frequency or first harmonic. In other 
words, any periodic function of (t) can be represented by an infinite series of 
sinusoids called the Fourier Series. 

The periodic waveform is expressed in the form of Fourier series, while a non-
periodic waveform may be expressed by the Fourier transform. 

The different forms of the Fourier series are given as follows. 
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(i) Trigonometric Fourier series 

(ii) Complex exponential Fourier series 

(iii) Polar or harmonic form Fourier series. 

Trigonometric Fourier Series 

Any arbitrary periodic function x(t) with fundamental period T0 can be expressed 
as follows. 

 

This is called the trigonometric Fourier series representation of signal x(t). Here, 
ω0 = 2π/T0 is the fundamental frequency of x(t), and coefficients a0, an, and bn are 
referred to as the trigonometric continuous-time Fourier series (CTFS) 
coefficients. The coefficients are calculated as follows. 

Fourier Series Coefficient 

 

From equation (ii), it is clear that coefficient a0 represents the average or mean 
value (also referred to as the dc component) of signal x(t). 

In these formulas, the limits of integration are either (–T0/2 to +T0/2) or (0 to T0). 
In general, the limit of integration is any period of the signal, and so the limits can 
be from (t1 to t2 + T0), where t1 is any time instant. 

Trigonometric Fourier Series Coefficients for Symmetrical Signals 
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If the periodic signal x(t) possesses some symmetry, then the continuous-time 
Fourier series (CTFS) coefficients become easy to obtain. The various types of 
symmetry and simplification of Fourier series coefficients are disused below. 

Consider the Fourier series representation of a periodic signal x(t) defined in the 
equation. 

 

Even Symmetry: x(t) = x(–t) 

If x(t) is an even function, then product x(t) sinωot is odd, and integration in 
equation (iv) becomes zero. That is bn = 0 for all n, and the Fourier series 
representation expressed as 

 

For example, the signal x(t) shown below figure has even symmetry, so bn = 0, 
and the Fourier series expansion of x(t) is given as 
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The trigonometric Fourier series representation of even signals contains cosine 
terms only. The constant a0 may or may not be zero. 

Odd Symmetry: x(t) = –x(–t) 

If x(t) is an odd function, then product x(t) cosωot is also odd and integration in 
equation (iii) becomes zero i.e. an = 0 for all n. Also, a0 = 0 because an odd 
symmetric function has a zero-average value. The Fourier series representation 
is expressed as 

 

For example, the signal x(t) shown in below figure is odd symmetric, so an = a0 = 
0, and the Fourier series expansion of x(t) is given as 
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Fourier Sine Series 

The Fourier Sine series can be written as     

      

------(2) 

• Sum S(x) will inherit all three properties:     
• (i): Periodic S(x +2π)=S(x);    (ii): Odd S(−x)=−S(x);    (iii):  S(0) = S(π)=0 
• Our first step is to compute from S(x) the number bk that multiplies sin(kx). 

Suppose S(x)=∑ bn sin(nx). Multiply both sides by sin(kx). Integrate from 0 to π in 
Sine Series in equation (2) 

 

• On the right side, all integrals are zero except for n = k. Here the property of 
“orthogonality” will dominate. The sines make 90o angles in function space 
when their inner products are integrals from 0 to π. 

• Orthogonality for sine Series 

 Condition for Orthogonality: 
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------(3) 

• Zero comes quickly if we integrate the term cos(mx)  from 0 
to π. ⇒ 0∫π cos(mx) dx = 0-0=0. 

• Integrating cos(mx) with m = n−k and m = n + k proves the orthogonality of 
the sines. 

• The exception is when n = k. Then we are integrating sin2(kx) = 1/2 − 1/2 
cos(2kx) 

 

 

------(4) 

• Notice that S(x)sin(kx is even (equal integrals from −π to 0 and from 0 to 
π). 

• We will immediately consider the most important example of a Fourier sine 
series. S(x) is an odd square wave with SW(x) = 1 for 0<x<π. It is an odd 
function with period 2 π, that vanishes at x=0 and x= π. 

 

Example: 

As given above, finding the Fourier sine coefficients bk of the square wave SW(x). 

Solution:  

For k =1,2,...using the formula of sine coefficient with S(x)=1 between 0 and π: 
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• Then even-numbered coefficients b2k are all zero because cos(2kπ) = 
cos(0) = 1. 

• The odd-numbered coefficients bk =4/πk decrease at the rate 1/k. 
• We will see that same 1/k decay rate for all functions formed from smooth 

pieces and jumps. Put those coefficients 4/πk and zero into the Fourier 
sine series for SW(x). 

 

Fourier Cosine Series 

The cosine series applies to even functions with C(−x)=C(x) as  

  

-----(5) 

 

Cosine has period 2π shown as above in figure two even functions, the repeating 
ramp RR(x), and the up-down train UD(x) of delta functions. 

• That sawtooth ramp RR is the integral of the square wave. The delta 
functions in UD give the derivative of the square wave. RR and UD will be 
valuable examples, one smoother than SW and one less smooth. 

• First, we find formulas for the cosine coefficients a0 and ak. The constant 
term a0 is the average value of the function C(x): 
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-----(6) 

• We will integrate the cosine series from 0 to π. On the right side, the 
integral of a0=a0π (divide both sides by π). All other integrals are zero. 

 

                                               

 

• Again the integral over a full period from −π to π (also 0 to 2π) is just 
doubled. 

Orthogonality Relations of Fourier Series  

Since from the Fourier Series Representation, we concluded that a periodic 
Signal it could be written as 

 

-------(7) 

 The condition of orthogonality is as follows: 
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Proof of the orthogonality relations: 

This is just a straightforward calculation using the periodicity of sine and cosine 
and either (or both) of these two methods: 

 

 

Energy in Function = Energy in Coefficients 

There is also another important equation (the energy identity) that comes from 
integrating (F(x))2. When we square the Fourier series of F(x) and integrate from 
−π to π, all the “cross-terms” drop out. The only nonzero integrals come from 
12 and cos2 kx and sin2 kx, multiplied by a0

2,ak
2 bk

2. 

• Energy in F(x) equals the energy in the coefficients. 
• The left-hand side is like the length squared of a vector, except the vector 

is a function. 
• The right-hand side comes from an infinitely long vector of a’s and b’s. 
• If the lengths are equal, which says that the Fourier transforms from 

function to vector is like an orthogonal matrix. 
• Normalized by constants √2π and √π, we have an orthonormal basis in 

function space. 

Complex Fourier Series  
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• In place of separate formulas for a0 and ak and bk, we may consider one 
formula for all the complex coefficients ck. 

• So that the function F(x) will be complex, The Discrete Fourier Transform 
will be much simpler when we use N complex exponentials for a vector. 

The exponential form of the Fourier series of a periodic signal x(t) with period 
T0 is defined as 

 

where ω0 is the fundamental frequency given as ω0 = 2π /T0. The exponential 
Fourier series coefficients cn are calculated from the following expression 

 

• Since  c0 = a0 is still the average of F(x), because e0 = 1. 
• The orthogonality of einx and eikx is to be checked by integrating. 

 

Example:  

Compute the Fourier series of f(t), where f(t) is the square wave with period 2π. 
defined over one period. 

 

The graph over several periods is shown below. 
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Solution: 

Computing a Fourier series means computing its Fourier coefficients. We do this 
using the integral formulas for the coefficients given with Fourier’s theorem in 
the previous note. For convenience, we repeat the theorem here. 

  

 

By applying these formulas to the above waveform, we have to split the integrals 
into two pieces corresponding to where f(t) is +1 and where it is −1.  

thus for n ≠ 0 ; 

       

   for n = 0  

  

 

We have used the simplification cos nπ = (−1)n to get a nice formula for the 
coefficients bn.  
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This then gives the Fourier series for f(t) 

 

Fourier Transform: 

Fourier transform is a transformation technique that transforms non-periodic 
signals from the continuous-time domain to the corresponding frequency 
domain. The Fourier transform of a continuous-time non-periodic signal x(t) is 
defined as 

  

where X(jω) is the frequency domain representation of the signal x(t), and F 
denotes the Fourier transformation. The variable ‘ ω’ is the radian frequency in 
rad/sec. Sometimes X(jω) is also written as X(ω). 

If the frequency is represented in terms of cyclic frequency f (in Hz), then the 
above equation is written as 

  

Note: 

The signal x(t) and its Fourier transform X(jω) are said to form a Fourier 
transform pair denoted as 

 

Existence of Fourier Transform: 

A function x(t) has a unique Fourier transform if the following conditions are 
satisfied, which are also referred to as Dirichlet Conditions: 

Dirichlet Conditions: 

(i)  is absolutely integrable. That is, 
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(ii) x(t) has a finite number of maxima and minima and a finite number of 
discontinuities within any finite interval. 

The above conditions are only sufficient conditions but not necessary for the 
signal to be Fourier transformable. For example, the signals u(t),r(t), and cos 
(ω0t) are not absolutely integrable but still possess a Fourier transform. 

Magnitude and Phase Spectrum: 

The Fourier transform X(jω) of a signal x(t) is, in general, the complex form that 
can be expressed as 

 

The plot of |X(jω)| versus ω is called the magnitude spectrum of x(t), and the plot 

of versus ω is called the phase spectrum. The amplitude (magnitude) and 
phase spectra are together called Fourier spectrum, which is nothing but the 
frequency response of X(jω) for the frequency range 

  . 

Inverse Fourier Transform: 

The inverse Fourier transform of X(jω) is given as 

 

This method of calculating the inverse Fourier transform seems difficult as is 
involves integration. There is another method to obtain inverse Fourier transform 
using partial fraction. Let a rational Fourier transform is given as 

 

X(jω) can be expressed as a ratio of two factorized polynomials in jω as shown 
below. 
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By partial fraction expansion technique, the above can be expressed as shown 
below. 

 

where k1 ,k2 ......kn calculated depending on whether the roots are real and simple 
or repeater or complex. 

Properties of Fourier Transform: 

There are some properties of continuous-time Fourier transform (CTFT) based 
on the transformation of signals, which are listed below. 

a. Linearity: 

The linearity property states that the linear combination of signals in the time 
domain is equivalent to a linear combination of their Fourier transform in the 
frequency domain. 

 

where a and b are any arbitrary constants. 

b. Time Shifting: 

The time-shifting property states that the delay of t0 in the time domain is 

equivalent to multiplication of  with its Fourier transform. It implies that the 
amplitude spectrum of the original signal does not change, but the phase 
spectrum is modified by a factor of -jωt0. 
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c. Conjugation and Conjugate Symmetry: 

 

d. Time Scaling 

Time scaling property states that the time compression of a signal in the time 
domain is equivalent to expansion in the Frequency domain and vice-versa, 

 

e. Differentiation in Time-Domain 

The time differentiation property states that differentiation in the time domain is 
equivalent to the multiplication of jω in the frequency domain. 

 

f. Integration in Time-Domain: 

 

g. Differentiation in Frequency Domain: 

The differentiation of Fourier transform in the frequency domain is equivalent to 
the multiplication of time-domain signal with -jt . 

Differentiation in Frequency Domain 
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h. Frequency Shifting: 

The frequency-shifting property states that a shift of ω0 in frequency is 

equivalent to multiplying the time domain signal by  

 

i. Duality Property: 

 

j. Time Convolution: 

Convolution between two signals in the time domain is equivalent to the 
multiplication of Fourier transforms of the two signals in the frequency domain. 

 

 k. Frequency Convolution: 

Convolution in the frequency domain (with a normalization factor of 2π) is 
equivalent to multiplying the signals in the time domain. 
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l. Area Under x(t): 

If X(jω) is the Fourier transform of x(t), then, 

 

that is, the area under a time function x(t) is equal to the value of its Fourier 
transform evaluated at ω= 0 

m. Area Under X(jω): 

If  X(jω) is the Fourier transform of x(t), then, 

 

n. Parseval's Energy Theorem: 

If X(jω) is the Fourier transform of an energy signal x(t). then 

  

where Ex is the total energy of the signal x(t). 

Z Transform & Sampling Theorem 

Sampling Theorem 

The sampling process is usually described in the time domain. In this process, an 
analog signal is converted into a corresponding sequence of samples that are 
usually spaced uniformly in time. Consider an arbitrary signal x(t) of finite energy, 
which is specified for all time as shown in figure 1(a). 

Page 53 of 66

www.jk
ch

rom
e.c

om

53  www.jkchrome.com www.jkchrome.com www.jkchrome.com



Suppose that we sample the signal x(t) instantaneously and at a uniform rate, 
once every TS second, as shown in figure 1(b). Consequently, we obtain an 
infinite sequence of samples spaced TS seconds apart and denoted by {x(NTS)}, 
where n takes on all possible integer values. 

Thus, we define the following terms: 

1. Sampling Period: The time interval between two consecutive samples is 
referred to as the sampling period. In figure 1(b), TS is the sampling period. 

2. Sampling Rate: The reciprocal of the sampling period is referred to as 
sampling rate, i.e. 

         fS = 1/TS 

 

Sampling theorem provides both a method of reconstruction of the original 
signal from the sampled values and also gives a precise upper bound on the 
sampling interval required for distortion less reconstruction. It states that 

• A band-limited signal of finite energy, which has no frequency components 
higher than W Hertz, is completely described by specifying the values of 
the signal at instants of time separated by 1/2W seconds. 

• A band-limited signal of the finite energy, which has no frequency 
components higher than W Hertz, may be completely recovered from a 
knowledge of its samples taken at the rate of 2W samples per second. 
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Aliasing & Anti-aliasing 

• Aliasing is such an effect of violating the Nyquist-Shannon sampling 
theory. During sampling the baseband spectrum of the sampled signal is 
mirrored to every multifold of the sampling frequency. These mirrored 
spectra are called alias. 

• The easiest way to prevent aliasing is the application of a steep-sloped 
low-pass filter with half the sampling frequency before the conversion. 
Aliasing can be avoided by keeping Fs>2Fmax. 

• Since the sampling rate for an analog signal must be at least two times as 
high as the highest frequency in the analog signal in order to avoid 
aliasing. So in order to avoid this, the analogue signal is then filtered by a 
low pass filter prior to being sampled, and this filter is called an anti-
aliasing filter. Sometimes the reconstruction filter after a digital-to-
analogue converter is also called an anti-aliasing filter. 

Explanation of Sampling Theorem 

Consider a message signal m(t) bandlimited to W, i.e. 

M(f) = 0           For |f| ≥ W 

Then, the sampling frequency fS, required to reconstruct the bandlimited 
waveform without any error, is given by 

Fs ≥ 2 W 

Nyquist Rate 

Nyquist rate is defined as the minimum sampling frequency allowed to 
reconstruct a bandlimited waveform without error, i.e. 

fN = min {fS} = 2W 

Where W is the message signal bandwidth, and fS is the sampling frequency. 

Nyquist Interval 

The reciprocal of Nyquist rate is called the Nyquist interval (measured in 
seconds), i.e. 
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Where fN is the Nyquist rate, and W is the message signal bandwidth. 

The Z - Transform of a discrete-time signal x[n] is defined as 

 

where z = r.ejω 

• The discrete-time Fourier Transform (DTFT) is obtained by evaluating Z-
Transform at z = ejω 

• The z-transform defined above has both sided summation. It is called 
bilateral or both sided Z-transform. 

Unilateral (one-sided) z-transform 

• The unilateral z-transform of a sequence x[n] is defined as 

 

Region of Convergence (ROC): 

• ROC is the region where z-transform converges. It is clear that z-transform 
is an infinite power series. The series is not convergent for all values of z. 

Significance of ROC 

• ROC gives an idea about values of z for which z-transform can be 
calculated. 

• ROC can be used to determine the causality of the system. 
• ROC can be used to determine the stability of the system. 

Summary of ROC of Discrete-Time Signals for the sequences 
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Characteristic Families of Signals and Corresponding ROC 
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Note: X(z) = z{x(n)} ; X1 (z) = Z {xl (n)} ; X2(z) = z{x2 (n)}; Y(z) =z (y (n)) 

Summary of Properties of z- Transform: 
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Impulse Response and Location of Poles 
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