JK Chrome

JK Chrome | Employment Portal

Rated No. 1 Job Application of India

Sarkari Naukri
Private Jobs
Employment News
Study Material

GET IT ON
Google play
JK Chrome

Oxidation \& Reduction

Oxidation (old concept) : Oxidation is a process which involves either of the following-
(i) addition of oxygen
(ii) removal of hydrogen
(iii) addition of electro negative element or group
(iv) removal of electro positive element or group.
$2 \mathrm{Mg}+\mathrm{O} 2 \rightarrow 2 \mathrm{MgO}$ (oxidation of Mg)
$\mathrm{H} 2 \mathrm{~S}+\mathrm{Cl} 2 \rightarrow 2 \mathrm{HCl}+\mathrm{S}$ (oxidation of H 2 S)
$\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{FeS}$ (oxidation of Fe)
$2 \mathrm{KI}+\mathrm{H} 2 \mathrm{O} 2 \rightarrow 2 \mathrm{KOH}+\mathrm{I} 2$ (oxidation of KI)
Reduction (old concept) : Reduction is a process which involves either of the following-
(i) addition of hydrogen (ii) removal of oxygen
(iii) addition of electro positive element or group.
(iv) removal of electronegative element or group.
$\mathrm{H} 2+\mathrm{Cl} 2 \rightarrow 2 \mathrm{HCl}$ (reduction of Cl 2)
$\mathrm{CuO}+\mathrm{C} \rightarrow \mathrm{Cu}+\mathrm{CO}$ (reduction of CuO)
$\mathrm{HgCl} 2+\mathrm{Hg} \rightarrow \mathrm{Hg} 2 \mathrm{Cl} 2$ (reduction of HgCl 2)
$2 \mathrm{FeCl} 3+\mathrm{H}_{2} \rightarrow 2 \mathrm{FeCl} 2+2 \mathrm{HCl}$ (reduction of FeCl 3)
Modem concept of oxidation and Reduction : According to modem concept, loss of electrons is called oxidation whereas gain of electrons is called reduction.
$\mathrm{Na} \rightarrow \mathrm{Na}++\mathrm{e}$ (oxidation of Na)
$\mathrm{Zn} \rightarrow \mathrm{Zn} 2++2 \mathrm{e}$ (oxidation of Zn)
$\mathrm{Cl} 2+2 \mathrm{e} \rightarrow 2 \mathrm{Cl}-$ (reduction of Cl 2)
$S+2 e \rightarrow S 2-$ (reduction of S)
Oxidising agent (O.A.) : A substance which undergoes reduction is called oxidising agent
$\mathrm{CuO}+\mathrm{C} \rightarrow \mathrm{Cu}+\mathrm{CO}$
Oxidation - C, Reduction - CuO, Oxidising agent - CuO
Examples-O2, O3, H2O2, KMnO4, K2Cr2O7 etc.
Reducing agent (R.A.) : A substance which undergoes oxidation is called reducing agent.
$\mathrm{H} 2 \mathrm{O}+\mathrm{C} \rightarrow \mathrm{CO}+\mathrm{H} 2$
Oxidation- C , Reduction- H 2 O , Reducing agent- C
Examples- $\mathrm{H} 2, \mathrm{CO}, \mathrm{H} 2 \mathrm{~S}, \mathrm{SO} 2, \mathrm{C}, \mathrm{SnCl} 2$ etc.
Redox Reaction : A reaction in which both oxidation and reduction takes place simaltaneously is called redox reaction.

Example-
$\mathrm{CuO}+\mathrm{C} \rightarrow \mathrm{Cu}+\mathrm{CO}$
Oxidation - C, Reduction - CuO
Oxidation number (O.N.) : The charge present on atom in molecule or ion is called oxidation number. It may be zero, positive or negative.

Rules for determination of oxidation number :

(i) Oxidation number of an atom in free state is zero.
(ii) Oxidation number of alkali metals ($\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$) in molecule is always +1 .
(iii) Oxidation number of alkaline earth metals $(\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ in a molecule is always + 2
(vi) Sum of Oxidation number of atoms in a molecule is equal to zero.
(vii) Sum of oxidation number of atoms in a ion is equal to magnitude of charge with sign.

Oxidation Number of Mn in KMnO4 :

Let O.N. of $\mathrm{Mn}=\mathrm{x}$
$1+\mathrm{x}+(-2) \times 4=0$
$1+x-8=0$
$x=+7$
xidation Number of Cr in K 2 Cr 2 O 7 :
Let O.N. of $\mathrm{Cr}=\mathrm{x}$
$1 \times 2+x \times 2+(-2) \times 7=0$
$2+2 x-14=0$
$x=6$
Oxidation Number of C in C 12 H 22 O 11 :
Let O.N. of $\mathrm{C}=\mathrm{x}$
$x \times 12+1 \times 22+(-2) \times 11=0$
$12 x+22-22=0$
$x=0$

Types of Reactions :

1. Combination reactions : In combination reactions, compounds are formed as aresult of the chemical combination of two or more elements.
$\mathrm{H} 2(\mathrm{~g})+1 / 2 \mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{H} 2 \mathrm{O} 2(\mathrm{l})$
$\mathrm{C}(\mathrm{s})+\mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{CO} 2(\mathrm{~g})$
$3 \mathrm{Mg}(\mathrm{s})+\mathrm{N} 2(\mathrm{~g}) \rightarrow \mathrm{Mg} 3 \mathrm{~N} 2(\mathrm{~s})$
2. Displacement reactions: In these reactions, an atom / ion present in a compound gets replaced by an atom / ion of another element.

FeSO4 (aq) $+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn} \mathrm{SO} 4(\mathrm{aq})+\mathrm{Fe}(\mathrm{s})$
$\mathrm{MgO}(\mathrm{aq})+2 \mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na} 2 \mathrm{O}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s})$
3. Disproportionation reactions : The chemical reaction in which only one substance is oxidised as well as reduced simultaneously is called disproportionation reaction.
$\mathrm{Cl} 2+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaOCl}+\mathrm{H} 2 \mathrm{O}$
$\mathrm{P} 4+\mathrm{NaOH}+2 \mathrm{H} 2 \mathrm{O} \rightarrow 2 \mathrm{NaH} 2 \mathrm{PO} 2+2 \mathrm{PH} 3$
4. Substitution reaction : In these reactions, one or more atoms or groups present in organic molecule get substituted or replaced by suitable atoms or groups.
$\mathrm{C} 2 \mathrm{H} 2 \mathrm{Cl}+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}+\mathrm{KCl}$
Ethyl chloride Ethyl alcohol
5. Neutralisation reaction : When an acid reacts with a base, salt and water is formed. This reaction is called neutralisation reaction.
acid + base \rightarrow salt + water
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}$

