JK Chrome

JK Chrome | Employment Portal

Rated No. 1 Job Application of India

Sarkari Naukri
Private Jobs
Employment News
Study Material
Notifications

COORDINATE GEOMETRY

RECTANGULAR COORDINATE AXES

Let $X O X^{\prime}$ be a horizontal straight line and $Y O Y^{\prime}$ be a vertical straight line drawn through a point O in the plane of the paper. Then
the line $X O X^{\prime}$ is called x-axis
the line $Y O Y^{\prime}$ is called y-axis
plane of paper is called $x y$-plane or cartesian plane.
x-axis and y-axis together are called co-ordinate axes or axis of reference.

The point O is called the origin.

Cartesian Coordinates

Position of any point in a cartesian plane can be described by their cartesian coordinates. The ordered pair of perpendicular distances first from y-axis and second from x-axis of apoint P is called cartesian coordinates of P.

If the cartesian coordinates of point P are (x, y), then x is called abscissa or x-coordinate of P and y is called the ordinate or y-coordinate of point P.

SIGN CONVENTIONS IN THE $x y$-PLANE

(i) All the distances are measured from origin (o).
(ii) All the distances measured along or parallel to x-axis but right side of origin are taken as $+v e$.
(iii) All the distances measured along or parallel to x-axis but left side of origin are taken as $-v e$.
(iv) All the distances measured along or parallel to y-axis but above the origin are taken as $+v e$.
(v) All the distances measure along or parallel to y-axis but below the origin are taken as $-v e$.

According to the Above Sign Conventions

(i) Coordinate of origin is $(0,0)$
(ii) Coordinate of any point on the x-axis but right side of origin is of the form $(x, 0)$, where $x>0$.
(iii) Coordinate of any point on the x-axis but left side of origin is of the form $(-x, 0)$, where $x>0$.
(iv) Coordinate of any point on the y-axis but above the origin is of the form $(0, y)$, where $y>0$.
(v) Coordinate of any point on the y-axis but below the origin is of the form $(0,-y)$, where $y>0$.

QUADRANTS OF xy-PLANE AND SIGN OF x AND y-COORDINATE OF A POINT IN DIFFERENT QUADRANTS

x and y-axis divide the $x y$-plane in four parts. Each part is called a quadrant.

The four quadrants are written as I-quadrant (XOY), II-quadrant ($Y O X^{\prime}$), III-quadrant ($X^{\prime} O Y^{\prime}$) and IV-quadrant ($Y^{\prime} O X$). Each of these quadrants shows the specific quadrant of the $x y$-plane as shown below:

(i) Any of the four quadrants does not includes any part of x or y-axis.
(ii) In the first quadrant both x and y-coordinates of any point are $+v e$.
(iii) In second quadrant x-coordinate of any point is $-v e$ but y-coordinate of any point is $+v e$.
(iv) In third quadrant, both x and y-coordinates of any point are $-v e$.
(v) In fourth quadrant, x-coordinate of any point is $+v e$ but y-coordinate of any point is -ve as shown in the above diagram.

PLOTTING A POINT WHOSE COORDINATES ARE KNOWN

The point can be plotted by measuring its proper distances from both the axes. Thus, any point P whose coordinates are (h, k) can be plotted as follows:
(i) Measure $O M$ equal to h (i.e. x-coordinate of point P) along the x-axis.
(ii) Now perpendicular to $O M$ equal to k.

Mark point P above M such that $P M$ is parallel to y-axis and $P M=k$ (i.e. y-coordinate of point P)

In this chapter, now we shall study to find the distance between two given points, section formula, mid-point formula, slope of a line, angles between two straight lines and equation of a line in different forms etc.

DISTANCE FORMULA

The distance between two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ isgiven by $P Q=\left|\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}\right|$ or $\left|\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right|$

Distance of point $P(x, y)$ from the origin $=\left|\sqrt{x^{2}+y^{2}}\right|$
Illustration 1: If distance between the point $(x, 2)$ and $(3,4)$ is 2 , then find the value of x.

Solution:

$$
2=\left|\sqrt{(x-3)^{2}+(2-4)^{2}}\right| \Rightarrow 2=\left|\sqrt{(x-3)^{2}+4}\right|
$$

Squaring bothsides

$$
4=(x-3)^{2}+4 \Rightarrow x-3=0 \Rightarrow x=3
$$

Illustration 2: Find the distance between each of the following points :

$$
A(-6,-1) \text { and } B(-6,11)
$$

Solution: Here the points are $A(-6,-1)$ and $B(-6,11)$
By using distance formula, we have

$$
A B=\sqrt{\{-6-(-6)\}^{2}+\{11-(-1)\}^{2}}=\sqrt{0^{2}+12^{2}}=12
$$

Hence, $A B=12$ units.

SECTION FORMULA

Co-ordinates of a point which divides the line segment joining two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x^{2}, y^{2}\right)$ in the ratio $m_{1}: m_{2}$ are :
(i) $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$, for internal division.

P divides $A B$ internally in the ratio $m: n$
If $m_{1}=m_{2}$, then the point P will be the mid point of $P Q$ whose co-ordinates $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

P is the mid-point of $A B$
(ii) $\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}\right)$, for external division

P divides $A B$ externally in the ratio $m: n$
(iii) When we need to find the ratio in which a point on a line segment divides it, we suppose the required ratio as $k: 1$ or m 名

Note:

(i) Co-ordinates of any point on the line segment joining two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are
$\left(\frac{x_{1}+\lambda x_{2}}{1+\lambda}, \frac{y_{1}+\lambda y_{2}}{1+\lambda}\right),(\lambda \neq-1)$
(ii) Division by axes: Line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x^{2}, y^{2}\right)$ is divided by
(a) x-axis in the ratio $-y_{1} / y_{2}$
(b) y-axis in the ratio $-x / x_{2}$

If ratio is positive division internally and if ratio is negative division is externally.
(iii) Division by a line: Line $a x+b y+c=0$ divides the line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $\left(-\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}\right)$.

Illustration 3: Find the ratio in which the line $3 x+4 y=7$ divides the line segment joining the points $(1,2)$ and $(-2,1)$. Solution: Ratio $=-\frac{3(1)+4(2)-7}{3(-2)+4(1)-7}=-\frac{4}{-9}=\frac{4}{9}=4: 9$.

Illustration 4: Find the points of trisection of line joining the points $A(2,1)$ and $B(5,3)$.
Solution:

$$
\begin{aligned}
& P_{1}(x, y)=\left(\frac{1 \times 5+2 \times 2}{1+2}, \frac{1 \times 3+2 \times 1}{1+2}\right)=\left(3, \frac{5}{3}\right) \\
& P_{2}(x, y)=\left(\frac{2 \times 5+1 \times 2}{2+1}, \frac{2 \times 3+1 \times 1}{2+1}\right)=\left(4, \frac{7}{3}\right) .
\end{aligned}
$$

Illustration 5: Prove that points $A(1,1), B(-2,7)$ and $C(3$, -3) are collinear.
Solution: $A B=\left|\sqrt{(1+2)^{2}+(1-7)^{2}}\right|=|\sqrt{9+36}|=3 \sqrt{5}$

$$
\begin{aligned}
& B C=\left|\sqrt{(-2-3)^{2}+(7+3)^{2}}\right|=|\sqrt{25+100}|=5 \sqrt{5} \\
& C A=\left|\sqrt{(3-1)^{2}+(-3-1)^{2}}\right|=|\sqrt{4+16}|=2 \sqrt{5}
\end{aligned}
$$

Clearly, $B C=A B+A C$. Hence A, B, C are collinear.
Illustration 6: Find the ratio in which the join of $(-4,3)$ and (5, -2) is divided by (i) x-axis (ii) y-axis.

Solution:

(i) x-axis divides the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio of $-y_{1}: y_{2}=-3:-2=3: 2$.
(ii) y-axis divides, in the ratio of $-x_{1}: x_{2} \Rightarrow 4: 5$.

COORDINATES OF SOME PARTICULAR POINTS

Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are vertices of any triangle $A B C$, then

Centroid

Centroid is the point of intersection of the medians of a triangle Centroid divides each median in the ratio of $2: 1$.

A median is a line segment joining the mid point of a side to its opposite vertex of a triangle.

Co-ordinates of centroid, $G=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Incentre

Incentre is the point of intersection of internal bisectors of the angles of a triangle. Also incentre is the centre of the circle touching all the sides of a triangle.

Co-ordinates of incentre,

$$
I=\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)
$$

where a, b, c are length of the sides opposite to vertices A, B, C respectively of triangle $A B C$.
(i) Angle bisector divides the opposite sides in the ratio of the sides included in the angle. For example

$$
\frac{B D}{D C}=\frac{A B}{A C}=\frac{c}{b} .
$$

(ii) Incentre divides the angle bisectors $A D, B E$ and $C F$ in the ratio $(b+c): a,(c+a): b$ and $(a+b): c$ respectively.

Level - I

1. If distance between the point $(x, 2)$ and $(3,4)$ is 2 , then the value of $x=$
(a) 0
(b) 2
(c) 3
(d) 4
2. Find the mid-point of the line-segment joining two points $(3,4)$ and $(5,12)$.
(a) $(-4,8)$
(b) $(0,8)$
(c) $(4,8)$
(d) $(4,0)$
3. The mid-point of the line segment joining the points $(-2,4)$ and $(6,10)$ is
(a) $(2,5)$
(b) $(2,7)$
(c) $(3,7)$
(d) $(3,8)$
4. The points $A(-4,-1), B(-2,-4), C(4,0)$ and $D(2,3)$ are the vertices of a
(a) Parallelogram
(b) Rectangle
(c) Rhombus
(d) Square
5. The line $x+y=4$ divides the line joining the points $(-1,1)$ and $(5,7)$ in the ratio
(a) $2: 1$
(b) $1: 2$
(c) 1:2 externally
(d) None of these
6. If $A(3,5), B(-3,-4), C(7,10)$ are the vertices of a parallelogram taken in the order, then the co-ordinates of the fourth vertex are
(a) $(10,19)$
(b) $(15,10)$
(c) $(19,10)$
(d) $(15,19)$
7. The centroid of a triangle, whose vertices are $(2,1),(5,2)$ and $(3,4)$ is
(a) $\left(\frac{8}{3}, \frac{7}{3}\right)$
(b)
(c) $\left(-\frac{10}{3}, \frac{7}{3}\right)$
(d) $\left(\frac{10}{3},-\frac{7}{3}\right)$
8. The incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
(a) $\left(1, \frac{\sqrt{3}}{2}\right)$
(b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
(c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
(d) $\left(1, \frac{1}{\sqrt{3}}\right)$
9. The centroid of the triangle whose vertices are $(3,10)$, $(7,7),(-2,1)$ is
(a) $(8 / 3,6)$
(b) $(6,8 / 3)$
(c) $(-4,-7 / 3)$
(d) None of these
10. The coordinates of the centroid G of a triangle with vertices at $(3,7),(5,5)$ and $(-3,2)$ is
(a) $(10 / 3,14 / 3)$
(b) $(10 / 3,10 / 3)$
(c) $(5 / 314 / 3)$
(d) $(11 / 3,10 / 3)$
11. The coordinates of a point which divides the join of $(5,-5)$ and $(2,-3)$ in the ratio $4: 3$, externally, are:
(a) $(3,4)$
(b) $(-7,3)$
(c) $(-7,9)$
(d) $(8,3)$
12. Distance between $P(x, y)$ and $Q(3,-6)$ is 10 units and x is positive integer, then $x=$
(a) 3
(b) 9
(c) 7
(d) 11
13. The vertices of a parallelogram in order are $A(1,2), B(4, y)$, $C(x, 6), D(3,6)$, then $(x, y)=$
(a) $(6,3)$
(b) $(3,6)$
(c) $(5,6)$
(d) $(1,4)$
14. The point which divides the line segment joining the points (7,-6) and (3, 4) in ratio $1: 2$ internally lies in the
(a) Iquadrant
(b) II quadrant
(c) IIIquadrant
(d) IV quadrant

How many squares are possible if two of the vertices of a quadrilateral are $(1,0)$ and $(2,0)$?
(a) 1
(b) 2
(c) 3
(d) 4
16. In what ratio is the line segment made by the points $(7,3)$ and $(-4,5)$ divided by the y-axis?
(a) $2: 3$
(b) $4: 7$
(c) $3: 5$
(d) $7: 4$
17. If the coordinates of the mid-point of the line segment joining the points $(2,1)$ and $(1,-3)$ is (x, y), then the relation between x and y can be best described by
(a) $3 x+2 y=5$
(b) $6 x+y=8$
(c) $5 x-2 y=4$
(d) $2 x-5 y=4$
18. Points $(4,-1),(6,0),(7,2)$ and $(5,1)$ are joined to be a vertex of a quadrilateral. What will be the structure?
(a) Rhombus
(b) Parallelogram
(c) Square
(d) Rectangle
19. Find the third vertex of the triangle whose two vertices are $(-3,1)$ and $(0,-2)$ and the centroid is the origin.
(a) $(2,3)$
(b) $\left(\frac{-4}{3}, \frac{14}{3}\right)$
(c) $(3,1)$
(d) $(6,4)$
20. If the origin gets shifted to $(2,2)$, then what will be the new coordinates of the point $(4,-2)$?
(a) $(-2,4)$
(b) $(2,4)$
(c) $(4,2)$
(d) $(2,-4)$
21. If the point $R(1,-2)$ divides externally the line segment joining $P(2,5)$ and Q in the ratio $3: 4$, what will be the coordinates of Q ?
(a) $(-3,6)$
(b) $(2,-4)$
(c) $(3,6)$
(d) $(1,2)$
22. $\quad C$ is the mid-point of $P Q$, if P is $(4, x), C$ is $(y,-1)$ and Q is $(-2,4)$, then x and y respectively are
(a) -6 and 1
(b) - 6 and 2
(c) 6 and - 1
(d) 6 and-2
23. A quadrilateral has the vertices at the points $(-4,2),(2,6)$, $(8,5)$ and $(9,-7)$. Show that the mid-points of the sides of this quadrilateral are the vertices of a parallelogram.
(a) Rectangle
(b) Square
(c) Parallelogram
(d) Rhombus
24. Find the ratio in which the point $(2, y)$ divides the join of $(-4,3)$ and $(6,3)$ and hence find the value of y
(a) $2: 3, y=3$
(b) $3: 2, y=4$
(c) $3: 2, y=3$
(d) $3: 2, y=2$
25. If $P\left(\frac{a}{3}, 4\right)$ is the mid-point of the line segment joining the points $Q(-6,5)$ and $R(-2,3)$, then the value of a is
(a) -4
(b) -12
(c) 12
(d) -6
26. The ratio in which the line $2 x+y-4=0$ divides the line segment joining the points $A(2,-2)$ and $B(3,7)$ is
(a) $3: 7$
(b) $4: 7$
(c) $2: 9$
(d) $4: 9$
27. Which of the following points is the nearest to the origin?
(a) $(0,-6)$
(b) $(-8,0)$
(c) $(-3,-4)$
(d) $(7,0)$
28. If the points $(1,1),(-1,-1)$ and $(-\sqrt{3}, k)$ are vertices of a equilateral triangle then the value of k will be :
(a) 1
(b) -1
(c) $\sqrt{3}$
(d) $-\sqrt{3}$
29. The points $(3,0),(-3,0),(0,-3 \sqrt{3})$ are the vertices of
(a) equilateral triangle
(b) isosceles triangle
(c) right triangle
(d) scalene triangle
30. Ratio in which the line $3 x+4 y=7$ divides the line segment joining the points $(1,2)$ and $(-2,1)$ is
(a) $3: 5$
(b) $4: 6$
(c) $4: 9$
(d) None of these
31. If the area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq unit, then what is the value of k ?
(a) 3
(b) 6
(c) 9
(d) 12
32. The line $y=0$ divides the line joining the points $(3,-5)$ and $(-4,7)$ in the ratio
(a) $3: 4$
(b) $4: 5$
(c)
(d) $7: 9$
33. The line passing through the points $(-2,8)$ and $(5,7)$
[SSC-Sub. Ins.-2012]
(a) does not cut any axes
(b) cuts x-axis only
(c) cuts y-axis only
(d) cuts both the axes

1. The fourth vertex of a rectangle whose other vertices are $(4,1)(7,4)$ and $(13,-2)$ is
(a) $(10,-5)$
(b) $(10,5)$
(c) $(-10,5)$
(d) $(-10,-5)$
2. The coordinates of vertices A and B of an equilateral triangle $A B C$ are $(-4,0)$ and $(4,0)$ respectively. Which of the following could be coordinates of C
(a) $(0,2 \sqrt{3})$
(b) $(0,4)$
(c) $(0,4 \sqrt{3})$
(d) $(0,3)$
3. The three vertices of a parallelogram are $A(3,-4), B(-2,1)$ and $C(-6,5)$. Which of the following cannot be the fourth one
(a) $(-1,0)$
(b) $(7,-8)$
(c) $(1,-5)$
(d) All of these
4. The mid-points of sides of a triangle are $(2,1),(-1,-3)$ and $(4,5)$. Then the coordinates of its vertices are:
(a) $(7,9),(-3,-7),(1,1)$
(b) $(-3,-7),(1,1),(2,3)$
(c) $(1,1),(2,3),(-5,8)$
(d) None of these
5. The point whose abscissa is equal to its ordinate and which is equidistant from the points $(1,0)$ and $(0,3)$ is
(a) $(1,1)$
(b) 2,2)
(c) $(3,3)$
(d) $(4,4)$
6. If the point dividing internally the line segment joining the points (a, b) and $(5,7)$ in the ratio $2: 1$ be $(4,6)$, then
(a) $a=1, b=2$
(b) $a=2, b=-4$
(c) $a=2, b=4$
(d) $a=-2, b=4$
7. The distance of point of intersection of $2 X-3 Y+13=0$ and $3 X+7 Y-15=0$ from $(4,-5)$, will be
(a) 10 units
(b) 12 units
(c) 11 units
(d) None of these
8. $\quad A(-2,4)$ and $B(-5,-3)$ are two points. The coordinates of a point P on Y axis such that $P A=P B$, are
(a) $(3,4)$
(b) $(0,9)$
(c) $(9,0)$
(d) $(0,-1)$
9. The centroid of a triangle formed by $(7, p),(q,-6),(9,10)$ is $(6,3)$. Then $p+q$
(a) 6
(b) 5
(c) 7
(d) 8
10. If the three vertices of a rectangle taken in order are the points $(2,-2),(8,4)$ and $(5,7)$. The coordinates of the fourth vertex is
(a) $(1,1)$
(b) $(1,-1)$
(c) $(-1,1)$
(d) None of these
11. If $P(1,2), Q(4,6), R(5,7)$ and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then
(a) $a=2, b=4$
(b) $a=3, b=4$
(c) $a=2, b=3$
(d) $a=3, b=5$
12. Find the coordinates of the points that trisect the line segment joining $(1,-2)$ and $(-3,4)$
(a) $\left(\frac{-1}{3}, 0\right)$
(b) $\left(\frac{-5}{3}, 2\right)$
(c) Both (a) and (b)
(d) None of these
13. If the mid-point of the line joining $(3,4)$ and $(p, 7)$ is (x, y) and $2 x+2 y+1=0$, then what will be the value of $p ?$
(a) 15
(b) $\frac{-17}{2}$
(c) -15
(d) $\frac{17}{2}$
14. Two vertices of a triangle are $(5,-1)$ and $(-2,3)$. If the orthocentre of the triangle is the origin, what will be the coordinates of the third point?
(a) $(4,7)$
(b) $(-4,7)$
(c) $(-4,-7)$
(d) $(4,-7)$
15. A point P is equidistant from $A(3,1)$ and $B(5,3)$ and its abscissa is twice its ordinate, then its co-ordinates are.
(a) $(2,1)$
(b) $(1,2)$
(c) $(4,2)$
(d) $(2,4)$
16. If $(-1,-1)$ and $(3,-1)$ are two opposite corners of a square, the other two corners are
(a) $(2,0),(-2,2)$
(b) $(2,-2),(0,2)$
(c) $(3,0),(4,-2)$
(d) None of these
17. What is the perimeter of the triangle with vertices $A(-4,2), B(0,-1)$ and $C(3,3)$?
(a) $7+3 \sqrt{2}$
(b) $10+5 \sqrt{2}$
(c) $11+6 \sqrt{2}$
(d) $5+\sqrt{2}$
18. The area (in sq. unit) of the triangle formed by the three graphs of the equations $x=4, y=3$, and $3 x+4 y=12$, is
[SSC CGL-2012]
(a) 12
(b) 10
(c) 6
(d) 8
19. The radius of the circumcircle of the triangle made by x-axis, y-axis and $4 x+3 y=12$ is
[SSC CGL-2012]
(a) 2 unit
(b) 2.5 unit
(c) 3 unit
(d) 4 unit
20. The total area (in sq. unit) of the triangles formed by the graph of $4 x+5 y=40, x$-axis, y-axis and $x=5$ and $y=4$ is
[SSC CGL-2014]
(a) 10
(b) 20
(c) 30
(d) 40

Level-I

1. (c) $2=\sqrt{(x-3)^{2}+(2-4)^{2}} \Rightarrow 2=\sqrt{(x-3)^{2}+4}$

Squaring both sides
$4=(x-3)^{2}+4 \Rightarrow x-3=0 \Rightarrow x=3$
2. (c) Let $A(3,4)$ and $B(5,12)$ be the given points.

Let $C(x, y)$ be the mid-point of $A B$. Using mid-point formula, we have, $x=\frac{3+5}{2}=4$ and $y=\frac{4+12}{2}=8$
$\therefore C(4,8)$ are the co-ordinates of the mid-point of the line segment joining two points $(3,4)$ and $(5,12)$.
3. (b)
4. (b)
5. (b) Ratio $=-\left(\frac{-1+1-4}{5+7-4}\right)=\frac{1}{2}$
6. (d) Mid point of $A(3,5)$ and $C(7,10)=M\left(5, \frac{15}{2}\right)$
\therefore Mid points of $B D=M\left(5, \frac{15}{2}\right)$
$B(-5,-4)$ and $D(x, y)$
$\therefore \frac{-5+x}{2}=5, x=10+5=15$
$\frac{-4+y}{2}=\frac{15}{2}, y=15+4=19$
Co-ordinates of fourth vertex $D=(15,19)$
7. (b) $x=\frac{2+5+3}{3}=\frac{10}{3}$ and $y=\frac{1+2+4}{3}=\frac{7}{3}$
8. (d) Clearly, the triangle is equilateral.

So, the incentre is the same as the centroid.
\therefore Incentre $=\left(\frac{1+0+2}{3}, \frac{\sqrt{3}+0+0}{3}\right)=\left(1, \frac{1}{\sqrt{3}}\right)$
9. (a) Centroid $=\left(\frac{3+7-2}{3}, \frac{10+7+1}{3}\right)=\left(\frac{8}{3}, 6\right)$
10. (c) Let G be (X, Y), then $X=\{3+5+(-3)\} / 3=5 / 3$ $Y=(7+5+2) / 3=14 / 3 \Rightarrow G$ is $(5 / 3,14 / 3)$
11. (b) Let the ratio be $4: 3$ or $4 / 3: 1$.

Now $X=\frac{\frac{4}{3} \times 2-5}{\frac{4}{3}-1}=\frac{\frac{8}{3}-5}{\frac{1}{3}}=\frac{-\frac{7}{3}}{\frac{1}{3}}=-7$
$Y=\frac{\frac{4}{3} x-3+5}{\frac{4}{3}-1}=\frac{1}{\frac{1}{3}}=3$. Hence $(-7,3)$
12. (b)
13. (a) Mid-point of $A C$ is $\left(\frac{1+x}{2}, \frac{2+6}{2}\right)$ i.e., $\left(\frac{1+x}{2}, 4\right)$; Mid-point of $B D$ is $\left(\frac{4+3}{2}, \frac{y+5}{2}\right)$
Since for a $\| \mathrm{gm}$, diagonals bisect each other
$\therefore \frac{1+x}{2}=\frac{7}{2}$ and $\frac{y+5}{2}=4 \Rightarrow x=6, y=3$
14. (d)
15. (c) 16. (d)
17. (b)
18. (a)
19. (c)
20. (d)
21. (c)
22. (a)
23. (c)
24. (c)

Then, $2=\frac{6 k-4 \times 1}{k+1} \Rightarrow k=\frac{3}{2}$
\therefore The required ratio is $\frac{3}{2}:: 1 \Rightarrow 3: 2$
Also, $y=\frac{3 \times 3+2 \times 3}{3+2}=3$
25. (d)

> 26. (d) 27. (c)
(c) The equilateral Δ has its sides equal.

Hence the distance between the vertices should be equal.
$a=\sqrt{2^{2}+2^{2}}=\sqrt{(\sqrt{3}+1)^{2}+k(k-1)^{2}} \Rightarrow k=\sqrt{3}$
29. (a) Find the three lengths separately
$A B=6, B C=\sqrt{3^{2}+(3 \sqrt{3})^{2}}=6$,
$A C=\sqrt{3^{2}+(3 \sqrt{3})^{2}}=6$
Hence, the point are the vertices of equilateral triangle.
30. (c) $-\frac{3(1)+4(2)-7}{3(-2)+4(1)-7}=-\frac{4}{-9}=\frac{4}{9}$
31. (a) Let the vertices of the $\triangle A B C$ be
$A(-3,0), B(3,0)$ and $C(0, k)$.
Given, area is 9
$\Rightarrow 9=\frac{1}{2}\{-3(-k)+1(3 k)\}$
$\Rightarrow 18=3 k+3 k$
$\Rightarrow k=\frac{18}{6}=3$
32. (c) Let $P(x, y)$ be the point of division that divides the line joining $(3,-5)$ and $(-4,7)$ in the ratio of $k: 1$
Now, $y=\frac{7 k-5}{k+1}$
Since, P lies on $y=0$ or x-axis then, from eq. (i)
$0=\frac{7 k-5}{k+1} \Rightarrow 7 k=5 \Rightarrow k=\frac{5}{7}$
33. (c)

As indicated in the graph, the line passing through the points cuts Y-axis only.

Level-II

1. (a) 2. (c) 3. (d)
2. (a) $\frac{X_{1}+X_{2}}{2}=2, \frac{X_{2}+X_{3}}{2}=-1, \frac{X_{3}+X_{1}}{2}=4$
$\Rightarrow \quad X_{1}=7, X_{2}=-3, X_{3}=1$
Similarly, y_{1}, y_{2}, y_{3} can be found
3. (b) Let the point be (X, X), so according to the condition $(X-1)^{2}+(X-0)^{2}=(X-0)^{2}+(X-3)^{2}$
$\Rightarrow 2 X+1=-6 X+9 \Rightarrow X=2$
Hence the point is $(2,2)$
4. (c) $\frac{2 \times 5+1(a)}{2+1}=4 \Rightarrow a=2$
and $\frac{2 \times 7+1(\mathrm{~b})}{2+1}=6 \Rightarrow \mathrm{~b}=4$
5. (b) The point of intersection will be obtained by simultaneously solving the two equations and then by the distance formula, distance can be found.
6. (d) Take points P one by one and see which one $(0,-1)$ satisfies.
7. (c) By the given condition $\frac{7+q+9}{3}=6$
and $\frac{p-6+10}{3}=3$
$\Rightarrow \quad q=2$ and $p=5 \quad \therefore p+q=5+2=7$
8. (c) Let fourth vertex be (x, y), then $\frac{x+8}{2}=\frac{2+5}{2}$
and $\frac{y+4}{2}=\frac{-2+7}{2} \Rightarrow x=-1, y=1$
9. (c) Diagonals cut each other at middle points.

Hence, $\frac{a+4}{2}=\frac{1+5}{2} \Rightarrow a=2$

$$
\frac{b+6}{2}=\frac{2+7}{2} \Rightarrow b=3
$$

12. (c)
13. (c)
14. (c)
15. (c) Let the point be $P(2 X, X)$. The choices we are left with are $(1,2)$ and $(2,4)$.
$A P=\sqrt{(3-2 X)^{2}+(1-X)^{2}}$,
$B P=\sqrt{(5-2 X)^{2}+(3-X)^{2}}$
$A P=B P$. (only $(4,2)$ satisfies)
16. (d) We have the mid-point of diagonal $=(1,-1)$ which should be the mid point of the other two points as well and which is not satisfied by any given alternative.
17. (b) By using distance formula, We have,

$$
\begin{aligned}
A B & =\sqrt{(0+4)^{2}+(-1-2)^{2}} \\
& =\sqrt{16+9}=5
\end{aligned}
$$

$$
\begin{aligned}
& B C=\sqrt{9+16}=5 \\
& C A=\sqrt{49+(1)^{2}}=\sqrt{50}
\end{aligned}
$$

 $5 \sqrt{2}$
Hence, required perimeter $=A B+B C+C A$

$$
\begin{equation*}
=10+5 \sqrt{2} \tag{1}
\end{equation*}
$$

(c) $x=4$
$3 x+4 y=12$
Putting $x=0$ in 3rd equation we get $y=3$
Putting $y=0$ in 3rd equation we get $x=4$
The triangle will be formed by joining the points $(3,0)$ and (0,4).
So, base $=3$ and altitude $=4$
Area $=\frac{1}{2} \times b \times h \Rightarrow \frac{1}{2} \times 3 \times 4=6$
19. (b) Putting $x=0$ in $4 x+3 y=12$ we get $y=4$

Putting $y=0$ in $4 x+3 y=12$ we get $x=3$
The triangle so formed is right angle triangle with points $(0,0)(4,0)(0,3)$
So diameter is the hypotenus of triangle $=\sqrt{16+9}$ $=5$ unit
radius $=2.5$ unit
20. (a)

Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AC}$
$=\frac{1}{2} \times(10-5) \times 4$
$=\frac{1}{2} \times 5 \times 4$
Area $=10$ squnit.

JK Chrome

JK Chrome | Employment Portal

Rated No. 1 Job Application of India

Sarkari Naukri
Private Jobs
Employment News
Study Material
Notifications

