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Basics of Control Systems

Control Engineering

Basically, Control engineering is applicable to aeronautical, chemical,
mechanical, environmental, civil, and electrical engineering which is based on the
foundations of feedback theory and linear system analysis, and it generatesthe
concepts of network theory and communication system theory.

Hence according to the theory of control engineering, it is not limitedse
engineering discipline but applicable to the different areas which re -@ h

control process for their functioning & Stable Operations. Q

2
II'I.'[J"LI[ — Process e m—— D'LII.'FFLII @

Open Loop Control System

« An open-loop control system & of a control actuator or controller to
receive the desired respon

« It uses a switching devic trol the process directly without using any
device.
« Anillustration of en- control system is an electric toaster.
« InOpen Loop Cg r ction, there is no feedback system present to
sense the error in sired output.
Output ¢
response Output
. > Process )
Clo op Control System

« Inaclosed-loop control system, it consists of an additional measure of the
actual output to compare the actual output with the desired output
response.

« This additional measure of the output is called the feedback signal.
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« A feedback control system that set out to maintain the relationship of one
system variable to another by comparing the functions of these variables
and using the difference as a means of control.

« Since the system becomes more complex, the interrelationship of many
controlled variables may be considered in the control scheme.

« Anexample of a closed-loop control system is a person steering (or
driving) an automobile by looking at the auto’s location on the road a
making the appropriate adjustments.

Actual
Difference or Actusting Emror Output
Response
| Controller Process |
Desired
QOutput
Response

*

Measurement Device

TEMPERATURE CONTROL SYSTEMS

« Inthe electric furnace, the temperat sured by a thermometer,
al temperature using an A/D

which is an analog device.

« The analog temperature convertﬁh
converter. The digital temper IS\¢then fed to a controller through an
interface.

« The digital temperature j§ t mpared with the programmed input
temperature, anddf thér error, the controller then sends out a signal
to the heater, tlﬁo%-nplifier, interface, and relay to bring the furnace

ired

temperature to th value.

Thermometer

*

AD Ll Interface
Canverter

—“mZ -

Amplifier (¢— Interface |—

Comparison between Open Loop & Closed Loop Control System

| Feature | Open Loop Control System | Closed-Loop Control System |
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Effect of Output on | No effect on input. The output signal affects the

Input controller output into the
system.

Stability Very Stable The response changes with
the change in the input
signal.

Response to No reaction to disturbances. The | The output of th ntroller

external open Loop control works on fixed | adjusts itself i seto

disturbances output. i i

Ease of The controller is easy to

Construction construct.

Cost Cheap

Bandwidth Small Bandwidth :

Maintenance Low Maintenance orgMaintenance is

uired.
Feedback Thereis no Feedback %]edback is always present.

Block Diagram Reduction technique

Need for Block Diagram Reduction:- So @ block diagrams are complex,
such that the evaluation of their perfor% quired simplification (or

reduction) of the block diagram is'done by the block diagram
rearrangements.
Advantages of Block Diagr Qion

*
o Its very simple to uct the block diagram for complicated systems.

« Single, as well as th&gverall performance of the system, can be studied by
[ nctiogs shown in the block diagram.

d-loop transfer function can be calculated easily using
laws.

ts of Linear Time-Invariant Systems
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R(s) . C(s) . R(s) G(s) C(s)
Input Output
Signals System
(@) ()
R(s)
R(s) Rs)
' R
Summing junction Pickoff point O
(c) (d) Q
Rules of Block Diagram reduction Technique
. Cascade series
Connection
Xa(s) = Cls) =
R(x) Gy (s)R(s) Gy(s)Gals) G (s)R(s)
e Gl(.') —— - -
- Z =
R(x) C(x)
= Gyls)Gala)Gy(x) -

o Parallel Connec‘t'

Xila) =

-
) FR(:)Gys) a:)-(tcm)tczu)tam)lkw’

Xy(s) = R(35)Gy(s)

)1 16,0026 Gy |—

« Block Diagram Algebra for Summing Junctions
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C=G(+R£X)
=+GR+GX

C=0CGR+
=G : )

« Block Diagram Algebra for Branch Point

R(s) G(s)
-~ G(s) f——»

R(s) R(s)

-

R(s)

—-

R(s) Gts)

— RG)

e

R(s) G(s)
—

R(x) R(s) G(s)

— G(s)

L
o

Basic lock Diagram Transformation
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Manlpulation Original Block Disgram Equivalent Block Diagram Equation

o ol A B o, 1 o (7 g Y—[GG}+Y | y=GG)¥

- ¢ R [ .
3 Combining Blocka in ’;@'—r ‘\._. ¥

Patallel; o Eliminating a
Forwand Laop

Moving a pickoll point | # Wl G — ¥
3 | behind a Hock '
" v
Moving a plekofl paint u =
4 |"head of i block \ v =G

Moving a summi _.®_, .
5 ;nhulfc;dudnb:zk “

Moving & sumeming point t, G
6 ahead of a block

e, =Gln ~u,)

Vo= Gy ~u,

y=(G, -G, )u

The objectives for this teg ical note are:

°
O
D
=
-]
D

rms describing signal-flow graphs.

w graphs for a block diagram.

« Dra ck diagram from a signal-flow graph.

' n the steps in the process to solve a system using Mason's gain

°
o
=
Q
[%2)

ula.
pply Mason’s gain formula to systems in block diagram or signal-flow-
raph form.

Basic Definition Related to Meson's Gain Formula

« Forward paths: Forward paths are continuous paths through the graph
from the input to the output. No node is passed more than once.
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« Feedback loops: Feedback loops are continuous paths through the graph
that starts and end at the same node.

« Path gain: Path gain is the product of the signal gains encountered on the
path.

« Loop gain: Loop gain is the product of signal gains encountered in a
feedback loop.

« Source node: Source nodes are nodes with only outgoing branches.

« Sink nodes: Sink nodes are nodes with only incoming branches.

Mesons gain Formula Statement
2 PA, O
where,

)
a oducts of all pairs of

oddcts of all triples of loop

Mason’s Gain Rule states 7 =

« Pxrepresents the path gain for the kth forwar

« A =1-(3 Sum of all individual loop gains) +
loop gains,(non-touching loops) )- (> su
gains,(Non-touching loops))+ ...

« A« =A-(C loop gains in A that touch

ath k)

o Linear System: Essentially a Li
principle of Superposition

Consider a system with t?-o

ystem is one that follows the
eity in their response to the system.

t) and output x(t)

F(t) Linear
System
. . ¢ .
Now if the input ged to g(t), the output is y(t)
g(t) ear y(t)=d(a(t))

I m is linear, then an input of h(t)=g(t)+f(t) yields an output z(t)=x(t)+y(t)

h(t)=Ff(t)+g(t) {ihear z(t)=p(h(t))

System =d(f(t))+a(a(t))
=x(t)+y(t)
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« Example of a nonlinear system: Now consider the same situation when
the system is nonlinear for example a squaring function.

f(t) » Non-Linear x(t)='.gf(t)=f‘(t) a(t) Non-Linear v(t)='-gg(t))=9'(0

System System

Now we can not find the output to the complex function h(t) by adding the
responses of the systems to the simpler function.

h(t)=F(t)+9(t)  Non-Linear Z(0=A(N(1)) =(F(t)+a(t))
; System

2
=(f(t)+q(t)) ;
#.(f(t))+a(g(t))=f (G@

« Time-Invariant: In the time-invariant system, th icabparameters of
the system do not change with time. The classicteXample of a non-time
invariant (or time-variant) system is a rock e mass changes with
time (a time-invariant rocket would have nt' mass).

« Continuous-Time: The Continuous-tigag,systems are time is a continuous,
or real-valued, variable. On the othe

screte-time systems have
time that moves in discrete step

Examples of discrete-time s msWinclude weekly closing stock prices
(updated weekly), the sound o tandard audio CD (updated 44,100 times per
second).

Analogous System ¢

An analogous electtical animechanical system has differential equations of the
same kind. Ther wo analogies that are used to go between the electrical
and mechani tems.

Page 9 of 86



10 www.jkchrome.com www.jkchrome.com www.jkchrome.com

Electrical Mechanical Analog | Wechanical
Quantity (Force-Current) (Force voslltage]
Voltage, e Velocity, v Force,
current, i Force, Velocity, v

Lubricity, 1/B

Resistance, R (Inverse friction)

Friction, B

Compliance, 1/K

Capacitance, C Mass, M (Inverse spring
constant)
Compliance, 1/K < : l

Inductance, L (Inverse spring Mass, M
constant)
Transformer, N1:N2 Lever, L1:L2 Lever, @L
To understand the analogy more clearly. The pa tersfor the mechanical

analogous are formed by substituting the analoggus ‘Parameters into the
equations for the electrical elements. For efampledby Ohm's law for electrical
circuit e=iR. For the Mechanical analog S aced by v, 1 by fand R by 1/B,

which yields v=f/B.
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Mechanical Mechanical
Electrical
Analog | Il
Equation (Force-Current) lFmAmm[e)
e=1R v= ! f=vB
B
ear 3 - L
z Ka
1
= — c'd! = K [ - =K -
-[ f=K[v-dt =K -x
! ¢, |
¢ w— it e L
e Y5
la-(.‘E fs.\tﬂc.\rn
dt ct
power =g+j power =v-f
Transformer Lever
& N, & i L L
e; N, , il =

capacitor energy
1

b
-

C-e*

inductor energy ¢ cuerEy

(1Y 1
K) 2
Zs'eloo‘lieszo
0 =
(not miphaty med
S veloaties =0
= Y forces=0
R Tad

(et sy phoity waed

Force-Current 'F-I' Analogy (Electrical to Mechanical)

Kirchoff's Current Law and D'Alemberts Law (with inertial forces included) are
helpful for converting an electrical circuit to a mechanical system.
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Electrical Mechanical 1
capacitor energy Mass energy
. 1 .
_1 C-e -M-v°
. b
voltage of ground=0 velacity of ground=0
{you can spply any current to | (you can spply any force fo
ground and voltage remaine 0)|ground snd voltage remainz 0)

Procedure for Conversion from Electrical to Mechanical.

Start with an electrical circuit. Label all node voltages.

Write a node equation for each node voltage.

Rewrite the equations using analogous making substitu@om the
table, with each electrical node being replaced by a positi

Draw the mechanical system that interconnects e equations.

Example: Draw the mechanical equivalent circuit o system.

L’—'VV\—""’”
(Ix a

R1 b
(t)

L

QO

Solution: By following the step§’in t iven Procedure

- X
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Y i=0=(v,-v,)B,~K|(v,-v,)at

=~ =(v,-v,)B, -K(x,-X,)
zf:O:KJ.(\';—\f)d!—\EB: Ma, O

1.

=K‘\: \.’ ‘\.aB;- \'ﬂ

fa(t)
*—'
Alternative . Another way from electrical to mechanical simply redrawing
the electri cuit using mechanical components.
. er the circuit, replacing electrical elements with their analogous;

ge sources by input velocities, current sources replaced by force
enerators, resistors with friction elements, inductors with springs, and
capacitors (which must be grounded) by masses. Each node becomes a
position (or velocity)

« Label positions, currents, and the mechanical elements as they were in
original electrical circuits.
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ble from bottom to top, or by the method where force generators
y current sources, friction elements by resistors, springs by

and masses by capacitors (which are grounded). Each position

Procedure for 'F-I' analogy for Electrical to Mechanical Conversion

Start with the mechanical system. Label all positions.

Draw the circuit by replacing mechanical elements with their analogous;
force generators by current sources, input velocities by voltage

Page 14 of 86
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sources, friction elements by resistors, springs by inductors, and masses
by capacitors (which are grounded). Each position becomes a node.

« Label the nodes and electrical elements as they were in the original
mechanical system.

analog is en Kirchoff's Voltage Law and D'Alemberts Law (with inertial
forces |

Mechanical 2
S forces =0

e

Procedure for Conversion from Electrical to Mechanical

« Start with an electrical circuit. Label all currents. Choose the currents so
that only one current flows through the inductors.

Page 15 of 86
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« Write loop equations for each loop.

« Rewrite the equations using analogs, making substitutions from the table,
with each electrical loop being replaced by a position.
« Draw the mechanical system that interconnects with the equations.

Example: Draw the Mechanical equivalent system of the Electrical Circuit.

i)

; ‘T é’&
.,.,m(_: (_, \jlh L O
s O

Solution: By following the procedure given for force vol@wiogy.

p

J OV
| ’x
&

~=J
—
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Y v=O=e «(i, -1 )R

‘e .

—
-y

) % \'—()~£f‘t:-l,i\1to(l; -1, )R ~1

ST v=0=1i .:|R -LJ'U. l,)dtoli. l;'rR-
C

di,

a

i
Y re0=t, +(v;,-v)B,

(V= ¥)B, « K(x,-x; )= (v,

Y =0 KI(\';-\',)d(o(v, v,

&2

K%, ~x;)+(v,~-v,)B

3= 0= (v, —v,)B - Kf(v,—v,)dt < (v, - v )8,

Rotatin ical Systems

Ge tem

The r system performs many functions, here we look at the gears that
increase or decrease angular velocity (while simultaneously decreasing or

increasing torque, such that energy is conserved).

« If we consider two gears in equilibrium and in contact with each other,

« Wwe can obtain very useful relationships.

Page 17 of 86
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« First, we note the geometric relationship that concludes from the path_that
the arc lengths along their circumference must be equal to the gear'situ

by »

l\ g QO

Since the arc lengths (shown with a heavy blue line) mt@cﬁal = arc

length= r101 = r202 arc length

« Now we can derive the second relations ' a‘torque balance. Here we
must define a force between the gear "contact force."This force
must be equal and opposite acro r ace between the two gears,
but its direction is arbltrary

Since the contacgforce itapgent to both gears and so produces a torque equal
to the radius ti e force.

We can have a torque balance on each of the two gears

For Gear 1: torque T1 = fcrior fc = T1/r1 & For Gear 2: torque T2 = fcra or fe = T2/12

Page 18 of 86
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From the above two equation we concluded that fc = T1/r1 = T2/r2

« Inthe system below, a torque (Ta), is applied to gear 1 (with a moment of
inertia J1). It, in turn, is connected to gear 2 (with a moment of inertia J-)
and a rotational friction B;. The angle 61 is defined as positive clockwise,
0, is also defined as positive clockwise. The torque acts in the direction of
1.

ral) XS

« We start by drawing free body diagrams, includir@;ﬁct force that we
will arbitrarily choose to be down on J; and e directions of the
reactive forces due to inertia and friction hoSen, and as always,
opposite to the defined positive directio

Ta + fcri1-J161 =0

This yields the two ecﬁ\wnotion

foro-J262 +B(62

« Note that we have a negative sign here because of the way 81 and 6> were
defined (if 81 moves in the positive direction, then 62 is negative). When
you use the arc length expression, you must be careful of the signs.

fero-J202-BB2=0

Page 19 of 86
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and 02=-r1/r2(61)
we can we write it as fero-Jo{ri/r2(61)} =0
fc =-J2{r1/(r2)?} 81 - Br {r1/(r2)%} 6;

We can put this into the equation for J1 and solve (in standard form with the
output (841) on the left, and the input (Ta) on the right.

Ta+ fcr1-J161 =0

or  Ta+[-J2{r1/(r2)? 61 - Br {r1/(r2)2}61r1] - J161 =0 QO

or {Ji+J2o(r1/r2)2}01 + Br(r1/r2)}61 = Ta
So we get 81 =r2/r1(82) & w1 =r2/r1(w2) @ ¢
& Since from the relation T1= r1/r2(T2)

we concluded that

Tiw1 = {r1/r2(t2)H{ra2/r1 (wz)}TZQw&O

Tiw1 =T2w2

Transfer Function O
L 2
Transfer Function {

The Transfer Functi@n (T6) of a System is the ratio of the output to the input of a
system, in the La domain considering its initial conditions and equilibrium
point to be zé&ko.

ut function of X(s), and an output function Y(s), we define the
ion H(s).

X Y
(s) Hes) (s)
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Impulse Response

Since we know that in the time domain, generally, we define the input to a system
as x(t) and the output of the system as y(t). The relationship between the input
and the output is represented as the impulse response, h(t).

We can use the following equation to define the impulse response:

t
h(E) = ’Z((T;
« The Impulse Function, denoted with &(t) is a function def] -wise as
follows

0, t<0 P
4(t) = { undefined, t=10
0, t>0

« An examination of the impulse function sRews%hat it is related to the unit-
step function as follows

a0 =S &
u(t)=[5(t) or ‘ Q
« Theimpulse respons (@t always satisfy the following condition, or
ulse*f@inction

elseitis not a tw i

f” §(t)dt =1 \
" .
main

Convolution j
stem input and the impulse response of the system, we can
ystem output using the convolution operation as such as

If we have
calcul

=R(t)*X(t).
Time-Invariant System Response
If the system is time-invariant, then the general description of the system can be

replaced by a convolution integral of the system's impulse response and the
system input. We can call this the convolution description of a system.
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y(t) =z(t) = h(t) = /_ Zz(f)h(t —7)dr

Convolution Theorem

« Convolution in the time domain turns into multiplication in the complex
Laplace domain.

« Multiplication in the time domain turns into convolution in the compl
Laplace domain.

LIf(t)+g(t) |=F(s)G(s) O
LIF®©)9®) |=F(s)+6(s) Q

Result: If the complex Laplace variable is s, then we ge y dgnote the transfer
function of a system as either G(s) or H(s). If the syste is X(s), and the
system output is Y(s), then the transfer function c ed as such

H(s)= 240);

] Q
« Soif we know the input to a give and we have the transfer

function of the system, w@ or the system output by multiplying
as
Y(s)=H(s)X(s) 0
*
Example: Impulse Respx

. Since we thatth@ Laplace transform of the impulse function, 6(t) is
. é[(?,(::a]r; ut this into the relationship between the input, output, and
tran nction, we get
Y(s H(s
or (1)H(s)

or Y(s)=H(s)

In other words, the "impulse response” is the o/p of the system when we
input an impulse function.
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Transfer Functions for Linear Systems

Consider a linear input/output system described by the controlled differential

equation
dy d" 1ty d™u d™ 1y
— +ay——+...+ay=b +b +...+b U
TR T BTGP m

where u is the input and y is the output.

« To obtain the transfer function of the system of the last e ut us

input be u(t) = est.
« Since the system is linear, there is an output of the systefg . that is also an
exponential function = y(t) = Yoes'.

« Inserting the signals into the last equation, we ﬂr@ ¢

(s" +a1s"! +:--+an)yo.e5t = (bos™ +b1s™---+by)e St

« And the response of the system canD letely described as |
.+bm

a(s) = s" +a1s" ! +-+a" & b(s) = bos™ &

) R | 4
¥(t) = we ».a(:)e‘

« So the transfer §uneti e given function is given by

b

Transfer Fun

Iternative Method

ow a linear system responds to the exponential input u(t) = et we
the'State space system

%— + Bu
y = Cr+ Du.

Let the input signal be u(t) = est and assume that s # Ai(A), where i = 1,...,n, where
Ai(A) is the ith eigenvalue of A. then
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X(t) = eflx (0) + I[: e’ gestidr = efty (0) + EAtth &lSI-A)g 4.

Since s # A(A) the integral can be evaluated and we get

2(t) = eA2(0) + V(a1 - A)7!|_ elI-Ap
= eMz(0) + e (s — A)™! (c“"‘")‘ - I)B
= eA(2(0) — (T — A B) + (s — A)~' Be™

& Output y(t) = Cx(t) + Du(t) O
= CeM{x(0)- (sl -A)'B}+[D+C(sl-A)'B]e® Q

Note: One term of the output is proportional to the inp = é® This term is
called the pure exponential response.
. If the initial state is chosen as x(0) = (slgfA
« the output only consists of the only expe ial'response and both the
state and the output are directly a o the input

pr
x(t) = (sl -A)'Best = (sl ~A)'Bu {
y(t) = [C(sl -~A) 'B+D]est = [C(slyA) "B+D]u(t).
« The ratio of thee%g input

G(s)=C(sl -A)'B+D is nsfer function of the system.
e ForHomo us% ation i.e; D=0 then
G(s) = C(sk-A)’ the transfer function of the system.

TheC f Pole & Zero
s and Zeros of a transfer function are the frequencies for which the
alue of the transfer function becomes infinity or zero respectively.
« The transfer function has many useful explanations and the features of a
transfer function are often associated with important system properties.

Three of the most important features are the gain and the locations of the
poles and zeros.
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H(a)z%

« Inthe above equation, N(s) and D(s) are simple polynomials in s. Zeros are
the roots of N(s) by setting N(s)=0 and solving for s. Poles are the roots of
D(s), by setting D(s)=0 and solving for s.

« In general Transfer Function must not have more zeros than poles, wesgan
state that the polynomial order of D(s) must be greater than or eq 0
polynomial order of N(s).

Effects of Poles and Zeros O

« when s approaches a zero (Zeros of Transfer function), the nimerator of
the transfer function N(s)—0.

« When s approaches a pole (Poles of Transfer 4
Function) the denominator of the transfer fu —0 & the value of
the transfer function approaches infinity.

« An output value of infinity should raise anfalarg bell for people who are
familiar with BIBO stability.

« Poles & Zeros of a transfer functio epresented in S-Plane, In s-
plane s = otjw where o representithe® uation on X-axis
& w represents the angular v itYgepresented on the y-axis.

« Inthe s-plane, the Poles areY@catéd by a cross (*) & the Zeros are located
by dot (.)

o/

lm

able System, All the Poles & Zeros of a Transfer Function must be
in the left half of the s-plane.
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A 3(s)
]:-//1\\)( - P
’ i 4
: X
S T — - Y1(5)
¥ |
,r N
-
«— stable region unstable region —>»

Note: If the Poles or Zero lie on the imaginary axis the tBe simple (order
only 1) then the system is said to be Marginally St Order of multiplicity
of Poles or Zeros on Imaginary Axis is more tha n that case system will
become Unstable.

Time Domain Analysis O

The Time Domain Analyzes of t to be done on basis of time. The
analysis is only be applied when t attee of the input plus the mathematical
model of the control system iskn xpressing the main input signals is not

an easy task and cannot begletermined by simple equations. There are two
components of any syst ime response, which are: Transient response &
Steady-state response.

« Transient Response: This response is dependent upon the system poles

only an he type of input & it is sufficient to analyze the transient
g a step input.

tate Response: This response depends on system dynamics and
t'quantity. It is then examined using different test signals by the
| value theorem.
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c(t) = ctr(t) + css(t)

Lansarnt R e Steady St

Output -

Standard Test Input Signals

Step sign;I: rit) = Aul(r).
Ramp signal:  r{t)= A6, 1>0. S
Parabolic signal: ()= A*12; 1>0. 2
Impulse signal:  r{r) = (1)

Time-Response of First-Order System O
&

Here consider the armature-contsol otor driving a load, such as a
videotape. The objective is to drivehe tape at a constant speed. Note that it is

an open-loop system.

R L =0

ik

'(s_) = kk, A r(r)=au(r), W(s)=ﬁ—'g= akk = akk,
R(s) s+ r.s+1 s s s+1/7,

w(t)=akk, —akk e "™ . = w, (0)=limw({)=akk,

[-»
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« Wss(t) is the steady-state final speed. If the desired speed is wy, choosing
‘a=w/k1km' the motor will eventually reach the desired speed.

2
« From the time response eV"m we concluded that @Tm the value of e

vt js less than 1% of its original value. Hen ed of the motor will
reach and stay within 1% of its final spee -time constants.

Let us now consider the closed-loop syst

Desired speed ro+ W
| POL f— =
¢ S
Here, 1(5)= (s S +1) = 1%m _ MRy
kkk, [ (z,s+]) r.s+(+kkk,) 7.5+]
h dT.= T
RN e T ok,

a then Response would be ; w(t) = akiko- akikoeV%

If a is properly chosen, the tape can reach the desired speed. It will reach the
desired speed in 51, seconds. Here To=Tm.So that we can control the speed of
response in the feedback system.

Ramp response of first-order system
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a W(s)

Let, k&, =1 for simplicity. Then, 7(s)=

- 1 1 =, ;rj
Then, Wi(s)=— =—-—2+ 1_
s(rs+l) s s r,5+]

= u(t) =tu(t)=1,(1=e" u(r)

The error signal is, e(?)=r(r)=wit)

Or, e(t)=r (1= Juir)

ess(t)= To

o Thus, the first-order system will track the unit ra
state error 1o, which is equal to the time constan

Time-Response of Second-Order System

s+l - R(s)

' wli
#E

www.jkchrome.com

. Also, let, r(r)=tul1)

utgpwith a steady-
system.

'
I
o
« Consider the arﬂ@control system. Its transfer function fromr
toyis,

-

T(s)= Y(s) _ Sk, B ki.k, 1, B @y
R(s) +s+kkk, o +Ls+k.kzk,,.f’r,, s*+20w,s+ @,
Tli'
wh can define
((A)n k1ik2km/Tm; & 2§Wn = 1/Tm

The constant § is called the damping ratio and wnis called the natural frequency.
The system above is, in fact, a standard second-order system.

The transfer function T(s) has two poles and no zero. Its poles are,
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5.5, =—C, ijw“’l-:_.': =—o+ jo,

Natural frequency (wn): The natural frequency of a second-order system is the
frequency of oscillation of the system without damping.

Damping ratio (§): The damping ratio is defined as the ratio of the damping
factor o, to the natural frequency wn.

Here,o is called the damping factor,wq is called damped or actual frequency.S§he
location of poles for different § are plotted in the given figure belowgF , the
two poles tjwn are purely imaginary. 1f0<§<1, the two poles are co @

conjugate. <: I

(Y
§=0
(<= “
l' |
4’ '4:
Lot 0
Rei
\C>lj', :“:'. »
\\ Y Luemd
Pode ™ 4
i-plaae Q
Unit Step Response of Sec @ System
> | o’ 1 s+2lw
Suppose, r(1)=ult), = REWS-N(5) == T ——————— s
s s+ 2Zos+@] s 5T +2las )
Or, A4
Y(s) . N =_l_- .v+.-,m_ +Lm, _
y(1=57) s (s+lm, ) +¢m_JI-';' )y
Perfo place transform, —

-

"";""COS(f').Jl-',’:)l-c""'sin(n;_,ll-.;’y. .
J=-¢
T
or, M) =1-—% [J"J: cos(a, Jl=CF W+ Csinlan, Ji =3 ):]
1

-s

g

c e 3 & 2.1 -
or, ,"(ﬂ=I-Fbln(w,!+0).\vltcrc. w, =m.,’l-5 and @ = tan '( 1= /¢ )=co:» '¢
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y(:):l-%e“‘sin(@,ﬁﬁ)

d

Second-Order Systems: General Specification

The second-order system exhibits a wide range of responses that must be
analyzed and described. To become familiar with the wide range of responses
before formalizing our discussion, we take a look at numerical examples o
second-order system responses shown in the figure.

« Underdamped Response (0<§<1)

This function has a pole at the origin that comes from the unit§tep and two
complex poles that come from the system. The sinusoidal freq is given the

name of damped frequency ¢
of oscillation, wd. This response is shown in the figure %underdamped.

Example:
L ¢ (CosV S/ ‘ sindss)
o L= 100 cosy 81— 194T")
Gly) splane, 4 2
| "
Ris) = 9 1) '
o] — - R o
r2iey 1 .
Undendamped 01\—!‘.

¢

- Overdamped System <€)

This functio poOle at the origin that comes from the unit step input and
two real p at come from the system. The input pole at the origin generates
the co ed response; each of the two system poles on the real axis

gengrates xponential natural frequency.
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el el =1 +017)p 'V

w
" U L7110
Gils) s<plane '
Ris) % 9 Cly) |
—t - ¥—N1+—-o0
4%+ 7854 1,146/

h \'ul.]lll[‘\‘d i

« Undamped Response (§= 0)

This function has a pole at the origin and two imaginary poIeSQole at the

origin generates the constant forced response, and the ysiem poles on the
imaginary axis at +j3 generate a Sinusoidal natural res e

Example:
Gils)
|
Rix) =3 i) ()
——cnedl }———
y*+9
Undarmped

¢

o Critically ed Response (§=1)

This functio pole at the origin and two multiple real poles. The input pole
at the orig erates the constant forced response, and two poles at the real
axis at erate a natural exponential response.
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(] N
' 5} s-plane !
Ris) =3 9 (1)
- -
x: ’ (\' \ 9 —*——. a
Critically damped -3

Note: In the above specifications of time domain, don't be confused e
number of Poles in G(s), to Specify for which type of Damping is pfe ra
particular case we consider the total number of poles are of trz ction

i.e; C(s)/R(s).

Summarization: Here once again we summarize the se rder damping
functions as;

—
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Poles Step response
fw el
s-plane
N
= 0 ,E;:: ()
—J,
Undam
o s+plane air) O
X ¢ Jay '.":" - C:
Ll 0<Z<1 2
-;'0’" B
; - |
X o, J1 =83 Underdamped

v”‘” O clf)
s=plane

ﬁ

Critically damped

cith)

&1

<

Overdamped

Time Domain Characteristics

In specifying the Transient-Response characteristics of a control system to a unit
step input, we usually specify the following:
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. Delay time (tq): It is the time required for the response to reach 50% of the
final value in the first attempt.

. Risetime, (tr): It is the time required for the response to rise from 0 to
100% of the final value for the underdamped system.

. Peaktime, (tp): It is the time required for the response to reach the peak
of time response or the peak overshoot.

. Settling time, (ts): It is the time required for the response to reach a
stay within a specified tolerance band ( 2% or 5%) of its final value

. Peak overshoot ( Mp): It is the normalized difference between thetim
response peak and the steady output and is defined as

. Steady-state error ( ess): It indicates the error between the autput

and desired output as ‘t’ tends to infinity.

Rise time, t,: Put y(2)=1 att=r,.=>sin(w,:,+9)=0=sin®:,3 = @=cos”' ¢
4
Peaka'mc,t’:Pms"v—=Oandsoh’:fort=l,;0= ), + ) — e cos{ayt+6)
w, oJ1-{
=>tnn(a},t,+9)=—‘=—'J—§= 0. >4, =kr k=012

(] (o,

Peak overshoot occurs @t k=1 =1, =T/ @, =7/ @, _4'1

*

s g @, 4

Settling time, 1, : For 2% olerance band, —2&™ =002, =, =—=4T
@, o
2
Steady-stat ssv It is found previously that steady-state error for a step
input is zego. ow consider ramp input, r(t)= tu(t).
1 o’

s{R(s)-Y(s)} = l,'ﬁs{—lz_—? & +2(,'a; .sul-(il1

1 ) s +2£;d)5+ﬁr y{} ‘o,

e, =lm—{l-— | = 3
s 5T +200,5+ 0, ’“’°s s +20ws+ @] @,

L3

z:e Id\

« Therefore, the steady-state error due to ramp input is 2&/wn.

Effect of Adding a Zero to a System:
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If we add a zero at s = -z be added to a second-order system. Then we have,

C(s)  (s+2)allz o} +s( o’ J

R(s) s +2los+e; 5 +2os+e} z\ 5 +2os+0]

« The multiplication term is adjusted to make the steady-state gain of the
system unity.

Manipulation of the above equation gives,

« The effect of the added derivative term is to produce a pr early
peak to the system response.
« The closer the zero to the origin, the more pronounce the ing

phenomenon. ¢
« Due to this fact, the zeros on the real axis near t Idin are generally

avoided in design. However, in a sluggish sy rtful introduction of
a zero at the proper position can improve ansient response.

%; be written as

ystem, if n = 1, the system is called
is called type-2 system, etc.

Types of Feedback Control System:

The open-loop transfer function of a s

e Ifn=0,the systemis call
type-1 system, if n = 2, the sy

Steady-State Error and stants:

The steady-state performafce of a stable control system is generally judged by
its steady-state esrofto stepyramp, and parabolic inputs. For a unity feedback
system,

E(s)= A

= B ) =l D 0)
330 =01+ G(s)

| hat steady-state error depends upon the input R(s) and the forward
tran function G(s).
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For unit-step mput: #(¢) = u(?), R(.s)=;
| 1 1, N
—llm = = - k. 1s call
% = ) = e T 1rom 1k, 2 ) postion cxvore

For unit-ramp input: r(¢)=ru(e), R(s) =;-’,
ST
10 :[l+G(s)] 40 :G(:) A:,

For unit-parabolic input: r(¢) =1 /2, R(s)= —y
1
= lim sE
a. lun ( ) ’_‘.m :-00: G(:) k k‘ 15 called of const.

Time Domain Characteristics

e, -lunsE() . k, 15 called velocity error ¢ 1

In specifying the Transient-Response characteristi¢s control system to a unit
step input, we usually specify the following:

clr)
Allowable tolerance
1 N\
| . | ‘
P i 5
|

e (ta): It is the time required for the response to reach 50% of the
| value in the first attempt.

The expression of delay time, tq for second-order system is:

1+0.7¢

td=
®n

Page 37 of 86



38 www.jkchrome.com www.jkchrome.com www.jkchrome.com

. Risetime, (tr): It is the time required for the response to rise from 0 to
100% of the final value for the under-damped system.

The expression of rise time, t: for second-order system is:

2n-¢
(l)d

t=

. Peaktime, (tp): It is the time required for the response to re eak
of time response or the peak overshoot. Q
The expression of peak time, t, for second-order system is:
Z)
nn
= —| seconds
=
For first peak, n = 1 (maxima) O
T
b K

),

For first minima, n = 2 Q

t, = nr
For second maxima, W=

3n 4

me, (ts): It is the time required for the response to reach and
within a specified tolerance band ( 2% or 5%) of its final value.

xpression of settling time, ts for second-order system is:
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For 2% tolerance band,

4
= Ean
For 5% tolerance band,
3
% = Zop

Peak overshoot (Mp): It is the normalized difference betwee
response peak and the steady output and is defined as Q

_elt)—e()

%M, x100%
c(o) ¢
The expression of peak overshoot, M, for secon tem is:

M = e-lA?22 O
= e-xcow Q&

= e
Mo =e

g
,/1 -g
Wheretan p = +——

2
Stead &vr (ess): It indicates the error between the actual output
e tput as ‘t’ tends to infinity.

If we add a zero at s = -z be added to a second-order system. Then we have,
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a5y
) (s+2)%/

s) S +20s5+0,

s) _ o, W8 o,
s) sS85+, z\ 5T +2%0s5+0),

C(
R(
C(
R(

« The multiplication term is adjusted to make the steady-state gai t

system unity. O
Manipulation of the above equation gives, < : ’
1d
(O =c(t)+=—c(®). @ .
z dt

« The effect of the added derivative term is oduee a pronounced early
peak to the system response.

« The closer the zero to the origin, the nounced the peaking

phenomenon.

« Due to this fact, the zeros on %\ms near the origin are generally
avoided in design. Howev a ish system, the artful introduction of
a zero at the proper posi'o improve the transient response.

Types of Feedback Control System:

The open-loop transfer function of a system can be written as

_ K(s+z)s+n)s+5) _ K'(Tus + DT+ DTG5+

G
© s"(s+p)(s+py )(s+ps)ee Sn(j}-ﬁ*'l)(i}r""+])(?};-35+1)‘“
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« If n=0,the system is called type-0 system, if n = 1, the system is called
type-1 system, if n = 2, the system is called type-2 system, etc.

Steady-State Error and Error Constants:
The steady-state performance of a stable control system is generally judged by

its steady-state error to step, ramp and parabolic inputs. For a unity feedbac
system,

1
AR TY-OX O O
Where, Q

E(s) is error signal @ *

R(s) is input signal

G(s) H(s) is the open loop transfer functionO

e, =lime(r)=limsE(s)

e, =lim K

s—-)(){ {l""G( Q
It is seen that steady- ends upon the input R(s) and the forward
transfer function G(s)

..% u(t)

1. If input is unit st
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R(s)=

Wl

Steady state error is

=lim<s ;- s
=1 { L+G($)H{S) R }]

Where

K, =limG(s)H(s) O
5=+

Ko is positional error constant. K

2. If input is unit ramp i.e R(t) GQ

1
l‘i_x‘lgsG(s)H(s)J =l:l'i_r£sG(s)H(s)]
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€ =

1
K

v

Where
K, = 1_i_l)1|']lSG(S)H(S)

Kv is velocity error constant.

3. If input is unit parabolic i.e R(t) = 0.5tu(t)

1
R(s5)= —
(5) s° O
Steady state error,

e ’
e }[lnc{ Fﬁ @
s +.m:fw {d(\ﬁo

Where
K, =lims'G(s)H(s) @

Ka is acceleration error constant:

2
Frequency alysis
In a feedb ntrol system, at least part of the information used to change the
outpu e Is derived from measurements performed on the output variable

type of closed-loop control is often used in preference to open-loop
here the system does not use output-variable information to influence
its output) since feedback can reduce the sensitivity of the system to externally
applied disturbances and to changes in system parameters.

Familiar examples of feedback control systems include residential heating
systems, most high-fidelity audio amplifiers, and the iris-retina combination that
regulates light entering the eye.
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Closed-loop control system:

Preset signal

Block diagram of a closed-loopico

The following figure shows a simple closed-loop system. Q
ne

Sometimes, we may use the output of the control system to adjust the
input signal. This is called feedback. Feedback is a special feature of a
closed-loop control system.

A closed-loop control system compares the output with the expected
result or command status, then it takes appropriate control actions to
adjust the input signal.

Therefore, a closed-loop system is always equipped with a sensogw is
used to monitor the output and compare it with the expectedo.

The output signal is feedback to the input to produce a tput.

A well-designed feedback system can often incr@e‘ccuracy of the
output.

Comparing signal

Process

Feedback

system

Feedback can be divi&%itive feedback and negative feedback.

Positive Feedback:

2
Positiv k causes the new output to deviate from the present
com tus.
For le, an amplifier is put next to a microphone, so the input volume

Increasing, resulting in a very high output volume.
eedback:

Negative feedback directs the new output towards the present command
status, so as to allow more sophisticated control.

For example, a driver has to steer continuously to keep his car on the right
track.
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Most modern appliances and machinery are equipped with closed-loop control
systems. Examples include air conditioners, refrigerators, automatic rice
cookers, automatic ticketing machines, etc. An air conditioner, for example, uses
a thermostat to detect the temperature and control the operation of its electrical
parts to keep the room temperature at a preset constant.

Comparing
temperture

Preset
femperalure

Elextrics!

..

Negaiive dev uthon |

Pesative doviation
Ictose)

Cooling system
(open )

Il Feaback II
Block diagram of the control system of an air conditioner O

« One advantage of using the closed-loop control i®that it is able to
adjust its output automatically by feeding the nal back to the

input.

« When the load changes, the error signalsegen@gated by the system will
adjust the output. However, closed-1Qg rol systems are generally
more complicated and thus more o make.

« Feedback is a common and powerful t@el'when designing a control
system.

« The feedback loop is the todlithat®akes the system output into
consideration and enabl stem to adjust its performance to meet a
desired result of the sys

*
In any control system, ut is affected due to a change in environmental

conditions or any kind of digsturbance. So one signal is taken from the output and
is fed back to the,input. Thisisignal is compared with reference input and then an
error signal is ge d. This error signal is applied to the controller and output
is corrected. system is called a feedback system.
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Disturbance
Control
Roference Adnsd
o i nanat output
(Dusired) ' (Controllec
l + variable)
Controller ‘_” Controlled
‘ Plamt
Sensor /
Transducer
Foodback I
Feodback control system

« When the feedback signal is positive then the system ca ositive
feedback system. For a positive feedback system error signal is the
addition of reference input signal and the feedba@a .

« When the feedback signal is negative then t s called a negative
feedback system. For a negative feedbac temythe error signal is given
by the difference of reference input signaliandthe feedback signal.

Feedback characteristics: Including fee @o the control of a system results
in the following.

Advantages:
e@t can be made to reproduce the input

em characteristics

« Increased accura

o Reduced sensitivi

« Reduction in the 8ffeGhof non-linearities

« Increased bagdwid he system can be made to respond to a larger
range of i eqlengies.

ages resulting from feedback are the increased risk of
e additional cost of design and implementation.

mmunications & Networks, Automotive, Biological Systems,
mental Systems & Quantum Systems.

Rule to Draw the Root Locus Plot

Rule 1-Symmetry: Since the characteristic equation has real coefficients, any
zeros must occur in complex conjugate pairs (which are symmetric about the
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real axis). Since the root locus is just a diagram of the roots of the characteristic
equation as K varies, it must also be symmetric about the real axis.

Rule 2-Number of Branches: Since the order of the characteristic equation is the
same as that of the denominator of the loop gain, the number of branches is n,
the order of the denominator polynomial.

Rule 3- Starting and Ending Points: Start from the magnitude
condition: K|N(s)/D(s)| =1

« So the locus starts (when K=0) at poles of the loop gain, an en
K—o00) at the zeros. Note: there are q zeros of the loop gg 0.
a

Rule 4- Locus On The Real Axis: The locus exists on the real the left of

a sum of the number of poles and zeros is odd on the

given system the
oop Zeros are Z then

Rule 5- Number of Branches Terminating to Infini
number of Open Loop Poles are P & the numbe

@ hat if we have a characteristic
an zeros (Z=M) then "N-M" of the root

Rule 6- Asymptotes Angle & Centroid:
equation P(s) that has more poles (P=

4
_ (Wi poles) — > (finite zeros)
i N—M

angles of the asymptotes ¢k are given by for K>0

2q+l

b = P z" 807)

where,q=0,1,2,..,n—-m-1.
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« The angles of the asymptotes gk are given by for K<0
2
g, =——(180")
P-Z

where,q=0,1,2,...,n-m-1.
Rule 7-Determining the Breakaway Points:
« First of all, we have to identify the portions of the real axis wt a
breakaway point must exist.
« Assuming we have already marked the segments of the feal dxis that are
on the root locus, we need to find the segments that are t art of the

root locus by either two poles or two zeros (eithe z€ros or zeros at
infinity).

« To estimate the values of s at the breakawayp @; characteristic
equation =
o 1+KP(s) =0 is rewritten in terms 016
1
K =-— =K{s
55 = K K

e values of s corresponding to the
(s)=0.

To find the breakaway points

maxima in K(s). i.e. where dK/

*
« Asthe last step, XC the roots of K'(s) that lie on the real axis
lo

. The roots that lie in these intervals are the

segments of the

here arg [G(s )H(s)] is the angle of G(s)H(s) excluding the pole where

ngle is to be calculated.

imilarly, the angle of arrival is given by 8. = 180° - arg [G(s)H(s)], where
arg [G(s)H(s)] is the angle of G(s)H(s) excluding the zero, where the angle
is to be calculated.

« When there are complex poles or zeros of P(s), the root locus branches will
either depart or arrive at an angle 6 where, for a complex pole or zero at s =
pors=z
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LP'(p)—O=mfors=p
P (z)+0=mfors=2z2

where
M
1§ (P
P(p) ==
H (p— 1’))
i=1
l'?él'j
N
[Il (2—2z) O

J1;[1(3 - p;) 2 *
In other words
P'(p) = (s — p)P(s) O
8=]J K

P(s
Pr(z) = 2L8)
S = 2| s=2
Therefore, exploiting the rule c lex numbers, we can rewrite 2P+(p)and
£P+(z) as
*
M
LP'(p) =) Lp—gz) - (p—pj)
t=1 =
pn
N
) o £(z —pj)
j=1
| ersection of the Root Locus with the jw Axis: To find the intersection
of ocus with the imaginary axis. The following procedures are followed

Step 1: Construct the characteristic equation 1+ G(s) H(s) = 0

Step 2: Develop Routh array in terms of K.
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Step 3: Find Kmar that creates one of the roots of the Routh array as a row of
zeros.

Step 4: Frame auxiliary equation A(s) = 0 with the help of the coefficient of a row
just above the row of zeros.

Step 5: The roots of the auxiliary equation A(s) = 0 for K = Kmar give the
intersection points of the root locus with the imaginary axis.

Value Gain Margin:
Grain Margin (GM) = QO
Valueof K at imaginary crossover
Desienvalueof K @ 2

Note: If the root locus does not cross the jw axi e gain is co. GM represents
the maximum gain that can be multiplied for th&lsys to be just on the verge

of instability. Q
Phase Margin: Phase margin (PM) can ined for a given value of K as
follows

« Calculate w for which | ) IRgw)| = 1 for the given value of K.

« Calculate [G (jw) H (jw)]

« Phase margin %18’ (jw) H (jw)]
Routh-Hurwitz Stabhility Criterion

L 4

The technique,R urwitz criterion is a method to know whether a linear
system is st ot by examining the locations of the roots of the
characteriSti uation. The method determines only if there are roots that lie

t half-plane; while it does not actually compute the roots.

ve a Transfer Function F(s):

bas™ { .J"—l ces ’m— s+ hm =
F(s)= + 05T Ao+ Op1 S =N(s)/ D(s)

Ags™ + a1 e @u_185 4+ ttp

where N(s) & D(s) are the Polynomials in s to know the Poles (by equating D(s)=
0) & Zeros (by equating N(s)=0).
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The Characteristic Equation of the above Transfer Function can be written as
1+G(s)H(s) = 0 ; or D(s)= ans"+an-18"" +........ ai1s+a, =0
To find out whether the system is stable or not, check the following conditions:

1. Two necessary but not sufficient conditions that all the roots have negativ
real parts are

« All the polynomial coefficients must have the same sign.
« All the polynomial coefficients must be non-zero.

s" |a

- " Qa, > Q.4 Bns "°*

Sn_l an-l a, 3 a, s gy
S |

s2lb b b

S"-3 ¢y Cy Cy

2. If condition (1) is satisfied, then compute the Routh-Hurwitz@as follows
*

o wheretheajaret y jal coefficients, these coefficients in the rest
of the table are® s follow:
—Up_2Up_y) by = =1 |9 “n
Gy Bpal Qyos
=la, a3 -1Iﬂn-| Ays
) =— Cy=—
bib b bt by

necessary condition that all roots have negative real parts is that all
theelements of the first column of the array have the same sign.
« “Fhe number of changes of sign equals the number of roots with positive
real parts.

Special Case-1: Zero First-Column Element

« If the first element of a row is zero, but some other elements in that row
are nonzero. Here we can replace the zero elements with "€", & complete

Page 51 of 86



52 www.jkchrome.com www.jkchrome.com www.jkchrome.com

the table, and then interpret the results assuming that "€" is a small
number of the same sign as the element above it. The results must be
interpreted in the limit as -0

Special Case-2: If Complete Zero Row.

« Whenever all the coefficients in a row are zero, a pair of roots of equ
magnitude and the opposite sign will be present.
« Here the Possibilities of these two roots could be Real or Conjugate

Imaginary with equal magnitudes and opposite signs.
« The zero row is replaced by taking the coefficients of dP(s)/@r P(s),

called the auxiliary polynomial, is obtained from the valu w
above the zero row. The pair of roots can be found by salyingJdP(s)/ds = 0.

« Itisto be noted that the auxiliary polynomial always has degree.
2
Example: Use of Auxiliary Polynomial @
Consider the quintic equation A(s) = 0 where A(g) |
$5+25%4+245%+48s2-50=0 O
Solution: The Routh array starts off K
5% 24 =25
s 2 48 =50 «— auxiliary polfnomigl9(s)
200
*
The auxiliary polynomi will be
P(s) = 2s* + 4852+ &
which show = 0 must have two pairs of roots of equal magnitude and
opposite hich are also roots of the auxiliary polynomial equation P(s) = 0.
Consid erivative of P(s) with respect to s we get = dP(s)/ds = 8s3 + 96s.

SO 3 row is as shown below and the Routh array will be
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s° 1 24 =25

o 2 48 =30

&3 8 96 «—— Coefhicients of dP(s)/ds
§2 24 =50

st 1127 0

$0

« Now there is a single change of sign in the first column of the resulii

On Solving the Auxiliary Polynomial 2s* + 48s? - 50 =
roots such as

o S2=1=>s=#%1
e s2=-25=s8=%j5

« so the original equation can be factored as = @ 1)(s +j5)(s - j5)(s
+2)=0.

Relative Stability Analysis
« The Routh'’s stability criterion prﬁ@ answer to the question

of absolute stability. This, in actical cases, is not sufficient. We
usually require information‘aBout®herelative stability of the system.
« Areal approach to examigsf@relative stability is to shift the s-plane, here we

substitutes=z -0 (g Z@nt) into the characteristic equation, write

the polynomial'm S0 nd then apply Routh’s stability criterion to the

new polynomial igz.
e The number fc% of sign in the first column of the array of

Polynomial inz is ggual to the number of roots which are located to the

right of th al line s =-0. Thus, this test reveals the number of roots
which e right of the vertical line s = -0?

Jury Stability, Test:

Accor ury stability test:

If —apz" a2 . ta,z+a, where ag >0

Then
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Row eI L iy
1 An Qp—1 Op-2. 2]
2 Qg 1 Q3. Qn
3 b1 bus bo
4 by b s
> Cn—2 Cp-3. Co
6 Cp  Cp... e Cpo2n
Where
by Qn  Qn—1—k
g g+l 5=10,1,2,3,....n—1

hn—l bn—?—k
by biy

Cp =

k—=10:1,2:3;...;m—2

This system will be stable if

L. |la,| <ag
2. P(z)lz=x >0

3. P(2)l:==—1 >0 for n even and P(z)].——1 < (f¢

'bn—ll > lbﬂl
[en-s| > |eal
lg2| > lqol

hence the system is stable.

Various Plots
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Bode Plot

The bode plot gives a graphical method for determining the stability of a control
system based on sinusoidal frequency response. Bode graphs are
representations of the magnitude and phase of G(j*w) (where the frequency
vector w contains only positive frequencies).

The bode plot consists of two graphs: Magnitude plot and Phase plot

« 2010g10 |G (jw)| versus logw, this is called the magnitude plot.

« Phase shift (in degrees) versus logw (frequency), is called p % ot

« Bode plots are asymptotic log magnitude and phase plots®¥hegsesare
drawn as straight lines. Q

« The corner frequency is the frequency at which the slope e asymptotic

log magnitude plot changes. 2
« The frequency band from w1 and w2 such tha 1)=10is called a
decade.

« For afirst-order factor, the slope of the nitude plot changes by +20
dB/decade at the corner frequency a to as the factor is in the

numerator or denominator respectiv second-order factor, the
slope changes by +40 dB/decadﬁ n.
Initial Slope of the Bode Plot: Initfalislopg can be determined by the type of the
system, Its value is different f nt types of system.

« TypeO system:‘ this s m, the initial slope is 0 dB/decade with dB
value 20 log K.
D

o Type 1system: F system, the initial part of the system is

20I0$ )| = 20log K - 20 log
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Mangnitude (dB)

A

601 _20 dB/decade
40 \k
20+

: —e — ®
0.1 1 10 ('102 10°

o=K=100
Intial part of plot for type 1 system O

« Type 2 system: For type 2 system, the initial part of the @

20logyp|G(jw) H(jw)| = 20logK - 40logw

Here, the initial slope is -40 dB/decade and@@) dB line at = =K

Mangnitude (dB)

A
60 i Q
4oi_‘~-~,.“-40 dB/decade 0

20+
0.1
Intial part
Phase d Gain Margin
The d GM can be calculated by considering the following plot
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?
|G| dB Nain crossover frequency
0dB -

N0
\{ve gain margin

+ve phase
margin

Phase cross over
frequency

« Gain Crossover Frequency: Frequency at which ma nitugt crosses
the 0 dB line. 2

« Phase Crossover Frequency: Frequency at whi age plot crosses the -
180° line

« Gain Margin: Value of gain from gain pl se crossover frequency is
called gain margin. Gain margin is pogiti it IS below zero dB line

« Phase Margin: Value of phase fro p t at the gain crossover
frequency is known as phase maggin."Rh@Se margin is positive if it is above
-180° line

/G = |— :
-180°

Minimum Phase, Non-minimuQ and All Pass Transfer Function
e Minimum phasg% t
G _1+sT)
4

phase system:

ion:

Il pass transfer functions:

1—5T

Gs[.s‘]=
S 1+s5T
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. If there are no poles of the transfer function at the origin, the initial slope of
the LM plot is zero and the magnitude is 20 log Kp up to the lowest corner
frequency.

. If thereis a single pole at the origin of the open loop transfer function the
LM plot has an initial slope equal to -20 dB/decade up to the lowest corner
frequency and if this line is extended, it will intersect the frequency axis at
w = ky.

. If there are two poles at the origin of the open loop transfer functioggthe
LM plot has an initial slope equal to -40 dB/decade up to the lowest cOger
frequency and this line is extended will intersect the frequen '

at @ =~Ka

« If there is one zero at the origin, the LM plot has an initia@equal to 20
dB/decade up to the lowest corner frequency. If there ar eros at the

origin, the LM plot has an initial slope equal to +4 degade up to the
lowest corner frequency and so on

« Multiplication of the transfer function by a Is equivalent to
shifting the LM plot vertically up by an e nt Qain in dB.

Effects of Addition of Poles: The effects o@ of poles are as follows

r locUs and it shifts towards the
efev axis occurs for a lower value of K

ing fower down.

« There is change in shape of th
imaginary axis. The interc
because of asymptote a

« System becomes oscill@

« Gain margin and felative ity decrease.

. There s reduct® ge of K.
o Asluggish respon be changed to a quicker response for the artful

Effects of Addition“of Zeros: The effects of addition of zeros are as follows

. change in shape of the root locus and it shifts towards the left of
s-plane.
tability of the system is enhanced.
« Range of K increases.
« Settling time speeds up.

Polar Plot

Page 58 of 86



59 www.jkchrome.com www.jkchrome.com www.jkchrome.com

The polar plot of a sinusoidal transfer function G(jw) is a plot of the magnitude of
G(jw) versus the phase angle of G(jw) on polar coordinates as w varied from
zero to infinity.

Procedure to Sketch the Polar Plot:

« Step-1: Determine transfer function G(jw).
« Step-2: Put s = jw in the transfer function to obtain G(jw).
« Step-3: At w = 0and m = oo, calculate | G(jw)|

lim| G{ jw)| lim | G juw)|
by <=¢* * and «== 7 .
« Step-4: Calculate the phase angle of G(jw) at w = 0 and O
lim /G ju| lim ZG| ju) C
by «=¢ 7 “and «== 7 7,
« Step-5: Rationalize the function G(jw) and separ
axis.
« Step-6: Equate the imaginary part Im|G(jw)| determine the
frequencies at which plot intersects the r d calculate the value of
G(jw) at the point of intersection by substituting@the determined value of

frequency in the expression of G(jw)
« Step-7: Equate the real part ReIG& ro and determine the
1

e r@l and imaginary

frequencies at which plots inte imaginary axis and calculate the
tion by substituting the determined
lizeéd expression of G(jw).

the help of the above information.

value of frequency in the sagi
« Step-8: Sketch the polafiplot wi

Polar Plot of Some Sta tions:

o Type 0 Syst
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Im 4 -270° or 90°

+ Re 180° e »Re
o‘ ’ °°
K ITI
Tl TZ
Gl S,

IT!
Polar plot for type 0 system O
o Type 1 System O

¢
G(s) = R
s(1+sT;)(1+5T,)

Im 4 -270°

- W=
-180° o]
KT,T,
0,
L 2
w=0 +-90

Polar plot for@ype
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Im, -270°

@‘“de,
w=0 /m-ﬂ
-180°« » Re

v -90°
Polar plot for type 2 system
Introduction of Additional Pole O

1 )
GF):Slu+sﬂjﬂ+sﬂj
Im
-270° 4 ey 1 O
/

a0
(A
o
« » Re
-180°
olar plot
Polar Plot
)
)
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-270°4 Im
wW=w
-180° >
L ) Re
Lﬂ increasing
-90°
w=0
Polar plot
Polar Plot For
1
=65
=
-270°4 Im
w increasing @
— -
w=0 ke
-180° o
I L 4
-9
Pojariploty
Gain Margin ase Margin with Polar Plot
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180°%°4Im

Unity circle
Phase crossover

frequency

-1 P J 1 i
m‘ f

Gain crossover_—*

frequency
-90°
Polar plot to show GM and PM

« Phase Crossover Frequency: The frequency at whij th% plot
crosses the -180° line is called the phase crosso ncy.

« Gain Crossover Frequency: The frequency a polar plot crosses
the unit circle is called gain crossover fre

« Gain Margin: At phase crossover freque

Gain margin = - 20 log a O

« Phase Margin (¢pm): At gaig.c oVeer frequency, if the phase is ¢ then
phase margin

‘Pm=180+q) 0

, @ e
where, ¢ is positiveirom anti-clockwise direction.

e gain is 'a' then

frequency in. Tt is known as the Nyquist stability criterion. It is based on the

compl result known as Cauchy’s principle of argument. Nyquist
criterioRi d to identify the presence of roots of a characteristic equation of a
con tem in a specified region of the s-plane. The nyquist approach is the

« The open loop transfer function "G(s)H(s)" is considered instead of closed
loop characteristic equation " 1+G(s) H(s) = 0".

« Inspection of the graphical plot of G(s) H(s) enables to get more than yes
or no answer of Routh-Hurwitz method pertaining to the stability of control
system.
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« Nyquist plots display both amplitude and phase angle on a single plot,
using frequency as a parameter in the plot.

« Nyquist plots have properties that allow you to see whether a system is
stable or unstable. It will take some mathematical development to see
that, but it's the most useful property of Nyquist plots.

Concept of Encirclement & Enclosement
Encirclement:

« point A is encircled in the counter er Clock Wise by cIosed path,
while point B is NOT encircled b d ath

Enclosement: A point or region @ye enclosed by a closed path if the
point or region lies to the right h when the path is traversed in any
prescribed direction. Q l

g
L.

(a) (b)
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« Infigure (a) point A is not enclosed by the path, while Point B is

enclosed by the path.
« Infigure (b) point A is enclosed by the path, while point B is not

enclosed by the path.
Nyquist Stability Criterion: Fundamentals

Consider the phasor from point A to S; of encirclement = N, the net angle
traversed by the phasor = 2nN rad

(a) O (b)
> ,

v WUl J J —
= +1; Point B of encirclement = +2.

| /N ’
« Infigure (a) Point A of encifelem
« Infigure (b) Point Aof e ent = -1; Point B of encirclement = -2.
_
Determination of N: .
jimA Als)- JjimaA 4 Als)-plane
2 ¢

N=(

Page 65 of 86



66 www.jkchrome.com www.jkchrome.com www.jkchrome.com

JimA# A(s)-plane JimA 4 A(s)-plane
N=43
N=0
N=0
>
Re A

« For a SISO feedback system, the closed-loop transfer fu@is given by

_ G(s) .
M(s) = 1 T H(s)G(s) @

« closed-loop system poles are obtained o] the following equation

@ haracteristic equation.

plex function

1+G(s)H(s) =0 =A(s) represents the
« In the following, we consider COF

D(s) = 1+G(s)H(s)

e« Thezerosof D efthe ed-loop poles of the transfer function. Here
now we conclu poles of D(s) are the zeros of M(s).
« Atthe same time, les of D(s) are the open-loop control system poles

since they ar
considere

onggibUged by the poles of H(s)G(s), which can be

e open-loop control system transfer function—obtained

back loop is open at some point.

ist stability test is obtained by applying the Cauchy principle of

o the complex function D(s). First, we state Cauchy’s principle

Ca 's Principle of Argument

« Let F(s) be an analytic function in a closed region of the complex s-plane,
except at a finite number of points (namely, the poles of F(s)).

. ltis also assumed that F(s) is analytic at every point on the contour. Then,
as 's' travels around the contour in the s-plane in the clockwise direction,
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the function F(s) encircles the origin in the [ReF{(s)}, Img{F(s)}]-plane in
the same direction N times, where N is given By

N= P-Z

where Z and P stand for the number of zeros and poles (including their
multiplicities) of the function F(s) inside the contour.

« The above result can be also written as

Arg {F(s)} = (Z-P)2nt = 2Nt O
) Imis| Im{F(s)} Q

C

el F(s))

s-plane

Nyquist Plot Q

The Nyquist plot is a polar plot'ef the function D(s) = 1+ G(s)H(s) when travels
around the contour ¢

Imis}
2

Fis)-plane

s-plane

« The contour in the above figure covers the whole unstable half-plane of the
complex plane s, R—00.
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« Since the function D(s), according to Cauchy’s principle of argument, must
be analytic at every point on the contour, the poles D(s) of on the imaginary
axis must be encircled by
infinitesimally small semicircles.

Nyquist Criterion:

« It states that the number of unstable closed-loop poles is equal to
number of unstable open-loop poles plus the number of encirclement§of

the origin of the Nyquist plot of the complex function F(s).

« The above criterion can be slightly simplified if instead of pI
function "D(s) = 1+G(s)H(s)", we plot only the function G : d count
encirclement of the Nyquist plot of G(s)H(s) around the %mm.

« The number of unstable closed-loop poles (Z) is equal to umber of

unstable open-loop poles (P) plus the number of lefhents (N) of the
point (-1+j0) of the Nyquist plot of G(s)H(s), that

Z=P+N

Phase and Gain Stability Margins

Two important notions can be deriv &the Nyquist diagram: phase and gain
stability margins. The phase and §ain stability margins are presented in the

Figure below
Im {6G)GS) |
I [ Y Q.
) ‘ ".'.
Re | His)Gis))

1(140)

« They give the degree of relative stability; in other words, they tell how far
the given system is from the instability region. Their formal definitions are
given by
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Pm = 180° + arg {G(jweg)H (Jweg) }

1
|G(jwep) H(jwep)|

« where wgc and wpe stand for, respectively, the gain and phase crosso
frequencies, which are obtained from the figure as

|IG(Jweg)H(Jweg)| =1 = weg O
g1k {G(e)u(Am®)} = 180, = ™

2
Example: Consider a control system represented by @
|

Gm[dB] = 20 log [dB]

G(s8)H(s) =

s(s+1)
Solution: Since this system has a pole hQn, the contour in the -plane
should encircle it with a semicircle initesimally small radius. This contour
has three parts (a), (b), and (c). in r each of them are considered below.

« On this semicircle, th mpléx variable 's' is represented in the polar form

by 's = Rel¥' wit? - < P = /2. Substituting 's =

Re*' into G(s)H y see that G(s)H(s)—0. Thus, the huge

semicircle from th e maps into the origin in the -plane.
Thus, the h mi‘cir e from the s-plane maps into the origin in

the G(s)H(s)
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? Ims) « 1 miGeHe)
m=ﬂ.r Sl
A .
(c) & fc) *‘ B
\ ‘b
4 Rels) -1 fa) A
1Y (b o w=tx L RelGOH)

L4

(c) (c) '

A A
n g VRS -_-"
w=i) B

« On this semicircle, the complex variable is represented irQolar form by
's = re'¥' with r—0, - 1/2 < g = /2. so that we ha@ ¢

1
rel?®

Since ¢ changes from '- m/2' at point @ at point B, arg{G(s)H(s)} will
change from "t/2 to -n/2". We conclud&tha infinitesimally small semicircle
at the origin in the s-plane is ma o'‘aysemicircle of infinite radius in
the G(s)H(s)-plane. % N

« On this part of the co@tou, s fakes pure imaginary values, i.e. s=
jw with w changi -00 to +00'.Due to symmetry, it is sufficient to

study only mapp g "0*= w =+00". We can find the real and imaginary
parts of the functioMG(jw)H(jw), which are given by

2

. -1

— 00 X arg

G(s)H(s) —

Fro e above expressions, we see that neither the real nor the imaginary parts
can be made zero, and hence the Nyquist plot has no points of intersection with
the coordinate axis. For w= 0* we are at point B and since the plot at w= +00 will
end up at the origin. Note that the vertical asymptote of the Nyquist plot is given
by

{Re G(jox)H(jot)} = -1
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« From the Nyquist diagram we see that N= 0 and since there are no open-
loop poles in the left half of the complex plane, i.e.P=0, we have Z =0 so
that the corresponding closed-loop system has no unstable poles.

Controllers & Compensators
Compensation Technique

In Control Engineering we generally focused on methods used to analyzé't
performance of a feedback system with a given set of parameters. ltS of
such analysis frequently show that the performance of the feedba@ is
unacceptable for a given application because of such deficienci De-
sensitivity, slow speed of response, or poor relative stability. G

The process of modifying the system to improve perf eds called
Compensation.

The required device added in the control systemfto'@btaif the performance as
per the desired specification is known as Cq ator.
Phase lead Compensation: &nc >

A phase lead compensator impr t sient response of the system. As
the name implies, this network s a positive or leading phase shift of the
output signal relative to the i ;@7 at all frequencies. Lead-network
parameters are usually S§gle€te cate its singularities near the crossover
frequency of the syst mpensated. The positive phase shift of the
network then improves t se margin of the system.

—+

A phase-lead compensator has a transfer function of the form:
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v, a(l+rs)
v,  l+ars
Where,

a’ f— i
R +R,
« A Lead Compensator is a high-pass filter. Q
« Zeros of the transfer function dominate in Phase@Cwnpensation

Technique.

—
F
r

% o
A/aT AIT 0 larie

iorf® PRase-lag systems are very common. These systems
torage unit and an energy dissipator are combined. One
w pass. The phase-lag compensator has a negative phase
sed to subtract phase from an uncompensated system.

Phase lag Com
occur when
example is,thgR
angle apd
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A phase-lag compensator has a transfer function of the form: O

Vo ltzs O
V, 1+pfrs .
Where, @
T=RC

s RAE, @

R,

Because the phase-lag co
the phase lag is not ags
direct means of impro
however, reduce the gain
consequence of this\
the lower fre

@ adds a negative phase angle to a system,
eCt of the compensation and does not provide a
phase margin. The phase-lag compensator does,

so can be used to lower the crossover frequency. A
ually, the phase margin of the system is higher at
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[0
X
A 4

AT -1 /BT s plane

O

Phase lag lead Compensation: With single lag or lead compeng use, we may
not be satisfied with design specifications. For an unst ncempensated
system, lead compensation provides a faster response@es not provide
enough phase margin whereas lag compensation ' he system but does
not provide enough bandwidth. So we need mu ensators in cascade
i.e. phase lag- lead compensation.

It acts as a band stop filter @
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-1/ BT, /T
—N—B-— >

AT -1/ BTy S plane

Controlling Action Q

« The controller (an analog/digital circuit, and soft isdrying to keep the
controlled variable such as temperature, liquid le tor velocity, robot
joint angle, at a certain value called the setp

« A feedback control system does this by |

atthe error (E) signal,
lled variable (called

the process variable (PV)) is, and whie uld be.

« Based upon the error signal, the
direction of the signal to the .
dt

e derivative (D), are all basic

The proportional (P), the integraisgl),
controllers.
Types of controllers:?’x%m and PID controllers

« Proportional ontlz)

With proporti ol, the actuator applies a corrective force that is

ount of error:

system output due to proportional control
K, = proportional constant for the system called gain

E = error, the difference between where the controlled variable should be and
where itis. E=SP - PV.
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Process variable (PV) f:

{position feesback)

Sel
point h Error | controller |
(SP) *U (E) LY.

Output

(a)

One way to decrease the steady-state error is to increase the syste in (Kp),
but high K, can lead to instability problems.

. . . o . 4
Increasing K, independently without limit is not a soun | strategy.

« Integral Control

The introduction of integral control in a co
state error to zero. Integral control appli ring force that is proportional to
the sum of all past errors, multiplied by &

Output = K| x Y (ExAt) Q
()

Output = controller output gral control
L 2
K= integral gain const metimes expressed as 1/T))

> (ExAt) = sum of,allN\pasteerrors (multiplied by time)

For a consta of error 3 (ExAt) will increase with time, causing the
restoring o get larger and larger.

Eventually, restoring force will get large enough to overcome friction and
ontrolled variable in a direction to eliminate the error.

o Derivative Control
One solution to the overshoot problem is to include derivative control. Derivative

control ‘applies the brakes,” slowing the controlled variable just before it reaches
its destination.

Page 76 of 86



77 www.jkchrome.com www.jkchrome.com www.jkchrome.com

Outputp = controller output due to derivative control
Kp = derivative gain constant
= error rate of change (slope of error curve)

« Combining P, |, and D controllers

As proportional, integral and derivative controllers have their individual

combination of P + 1, or P + D, and are referred to as Pl and PD
respectively.

« PID control P

A proportional—-integral-derivative controller (PID g6 s a generic control

variable and a desired setpoint by calc 1 then outputting a corrective

[
action that can adjust the process ac (l&'g

-Setpoint . Erroz -» — Outpit —»

ndation of the system is proportional control. Adding integral control
provides a means to eliminate steady-state error, but increases overshoot.
Derivative control increases stability by reducing the tendency to overshoot.

Simply adding together the three required control components generates the
response of the PID system.
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Output pip = output from PID controller
Kp = proportional control gain

Ki = integral control gain

Kp = derivative control gain

E = error (deviation from set point)

>(ExAt) = sum of all past errors (area under the error/time curve) O

&l O

4
rate of change of error (slope of the error curve) @

Equation is:

L
Ouptt s = K;E+ - | {(\ @
I

When you are designing,a P, toller for a given system, follow the steps
shown below to obtaig t ired response.

Obtain an opgn-loopsesponse and determine what needs to be improved.
Add a pro naléeontrol to improve the rise time.

Add a dgri control to improve the overshoot.

Add a | control to eliminate the steady-state error.

Adj h of K,, Ki, and Kq until you obtain a desired overall response.

aswd =

Th cteristics of P, I, and D controllers

. proportional controller (K,) will have the effect of reducing the rise time
and will reduce, but never eliminate, the steady-state error.

« Anintegral control (Ki) will have the effect of eliminating the steady-state
error, but it may make the transient response worse.

« A derivative control (Kq) will have the effect of increasing the stability of
the system, reducing the overshoot, and improving the transient response.
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+.
Parameter P " PD iy
Time constant Degease Incraass Decraass Smal Changz{Deoeass|
Rise Time Decrease Increase Decrease Smpll change(Decroate)
Saak Tima Derease Incraasa Decrassa Smal changs (Decaess)|
Overshoot Increase Decrease Increase Small change(Decreasa)
Setting Time Small Changs Incraasa Decraass Smald changs (Deoeata
SteadyState Error Decrease Decrease No Change Decronse
Stahility Decrease{worse) Decrease{worse) Improve imprave

www.jkchrome.com

Comparison between P Pl and PID controller.

State Space Analysis

The so-called state-space description provides the dynamics

variables, together with a set of algebraic equations that combin

variables into physical output variables.

State: The state of a dynamic system refers to a set of variables,

known as state variables, that fully describe the$ys
-

r

« A mathematical description of the erms of a minimum set of
variables, xi(t), i = 1,...,n, togethepWithNigadwledge of those variables at an
initial time to, and the system or time t = to, is sufficient to predict
the future system state an%

or all time t>to.

Input vector u ut vector y
(1) l : —J'> 20
' > descibed by bles >

The ic behavior of a state-determined system is completely

n is defined to be the order of the system.

system shown in the above figure has two inputs u.(t) and u2(t),

nd four output variables yi(t),...,ya(t). If the system is state-determined,
knowledge of its state variables (x1(to), X2(to),-.-,Xn(to)) at some initial
time to, and the inputs u1(t) and uz(t) for t = to is sufficient to determine all
future behavior of the system.
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« The state variables are an internal description of the system which
completely characterize the system state at any time t, and from which any
output variables yi(t) may be computed.

The State Equations

The standard mathematical form of the system is expressed as a set of n
coupled first-order ordinary differential equations, known as the state equatio
in which the time derivative of each state variable is expressed in terms,0f

state variables xi(t),...,xn(t) and the system inputs us(t),...,ur(t). In the | case
the form of the n state equations is: 6

.l:| = fl |:x.u.(] O
T, = faix.ut)

O
% = Jcul)

« where * =dxi/dt and each of the funcliens¥i (x, u, t), (i = 1,...,n) may be a

general nonlinear, time-varying fun he state variables, the system
inputs, and time.

o Itis common to express t ations in a vector form, in which the
set of n state variables is written a8 a state vector x(t)=[x1(t), x2(t),...,xa()]",
and the set of r inputs isghritteMyas an input vector u(t)=[u.(t),
uz(t),...,ur(t)]™. Each stat@yarigble is a time-varying component of the
column vector ¥(t)?

« Invector notatio et of n equations in Egs. (1) maybe written as
y *
X=f(x,u,t)
where , 1) Is a vector function with n components fi (x, u, t).
+ Qpry + ... A+ U, + by + ..+ b,
+ apTz + ... 4+ GuTy + buuy + ... + byu,
Lp = 0Ty + @urz + ... 4+ Guun + buuy 4+ ... + bpeu,

where the coefficients ajj and bjj are constants that describe the system.

The last equation can be written in matrix form as below
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11 fl;ly 12 ... M ¥ bn ”lr

d | T2 yy Q99 --. Qg Ty byy by
dt

_“nl flya .. iy,

which may be summarized as:

).(=Ax+Bu

column vector of length r, A is an n x n square matrix of the c@nstant
coefficients ajj, and B is an n x r matrix of the coefficient

the inputs. @ &
Output Equations
System output is defined to be any system vari of¥interest. An arbitrary
output variable in a system of order n with @ s'nay be written as

« Where state vector x is a column vector of length n, the Q@r uisa

at weight

y(t) = cix1 + cax2 + ... + CaXn + diuq + .+ hUr

where the c¢i and di are constan totdl of m system variables are defined as
outputs, then the output equation c Iso be obtained as State Equation in
compact form

*
y =Cx + Du
« whereyis m# vecttor of the output variables yi(t), C is an mxn matrix
of the oefficients cj that weight the state variables, and D is an

the constant coefficients dj that weight the system inputs.
« For hysical systems, the matrix D is the null matrix, and the output

Block Diagram Representation of Linear Systems Described by State Equations
A system of order n has n integrators in its block diagram. The derivatives of the

state variables are the inputs to the integrator blocks, and each state equation
expresses a derivative as a sum of weighted state variables and inputs. A
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detailed block diagram representing a system of order n may be constructed
directly from the state and output equations as follows:

’ 'lj: D %l

=

+7

1=

. Draw nintegrator (S7") blocks, and assign a state variable to t of
each block.
« Atthe input to each block (which represents the derivatife of j ate

variable) draw a summing element.
« Use the state equations to connect the state vari@an& inputs to the
summing elements through scaling operator blo
« Expand the output equations and sum the st iables and inputs
through a set of scaling operators to for components of the output.
7 A
Example: Draw a block diagram for the ger@ nd-order, single-input single-

output system
Ty @y ay2 . &
T3

-

2y 22 b2

] u(t)

y(t) = 'cl @ : du(t).

the block diagram showmpbelow is drawn using the four steps described above
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*
Transformation from Classical Form to State-Spac @ntation

Let the differential equation representing the systemybe of order n, and without
loss of generality assume that the order of nomial operators on both

sides is the same. 6
& + -+ + bo)U(s)

e equation by s™ to ensure that all

o We may multiply both sidesro
differential operators F e béen’eliminated
1
.4

(ans" + @n-18"""+ --- + ag)Y(s) =(b

ant an-1s7" + % aos-nY(s) =bptbn-1s7" + -+ + b1s™ ™ V4 -oc +
bos™U(s)

from which the
define a du

may Be specified in terms of a transfer function. If we
iable Z(s), and split into two parts

Z(s [7(:
(s) d 15 4 oo 4 aps— ") 4 gos™™ ()
(l’n g 1’11-15-1 e it o ,)l“"—(n—l) + ”U“‘—n) Z(h)
Eq. of Z(s) can ne be solved for U(s)

U(S) = (an + @n-18"" + =+ + 215" ™ + ags™X(s)

State-Space and Transfer Function
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The state equation form

x = Ax+ Bu
vy = Cx+Du

can be transformed into transfer function.

Tanking the Laplace transform and neglect initial condition then

sX(s)- X(0) = AX(s)+BU(s)

y(s) = CX(s) + DU(s) O
then sX(s)-AX(s)= X(0)+BU(s) Q

By Neglecting Initial Conditions @ ¢

(s-A)X(s) = BU(s)

X(s) = (s--A)" BU(s) O
Then Put the value of X(s) for Y(s).. K
then Y(s) = C(sl-A)'BU(s)+ D Q
Y(s)/U(s) = G(s) = C(slzA)™ +b
State-Transition Matri %

The state-transitij atrix ig)defined as a matrix that satisfies the linear
homogeneoug,st
equation:

dx(t) .

T W S (i)

Let ¢(1) be the n x n matrix that represents the state-transition matrix; then it
must satisfy the
equation:
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88— auct (i)

Furthermore, let x(0) denote the initial state at t = 0; then ¢(t) is also defined by
the matrix
equation:

x(t) = ¢(E)x(0) e (iii)

which is the solution of the homogeneous state equation fort = 0. y of

determining ¢(t)
is by taking the Laplace transform on both sides of Eq. (i); we Rave

SX(s) =X(0) = AX(S) wovvvveeeecee (iv) @ <

Solving for X(s) from Eq. (v). we get

X(s) = (SI-A)IX(S) ... (V) O
where it is assumed that the mairix & is non-singular. Taking the inverse
yields

Laplace

transform on both sides of Eq.@
x(t) = L (sl - A)-l;x$ ..... (vi)

x(t) = eAX(0)

for t = 0, where eAt represents the following power series of the matrix At, and
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AT | 1 343 4 —
-I+At+2—!At2+ ! 3'At RN (V7 1))

Properties of State-Transition Matrices.

The state-transition matrix OM possesses the following properties:
1. $(0) = I (the identity matrix)

2. ¢7(t) =4 (-1)
3. é(tz - t1 ) §(ts - to) = &(tz - to) for any to, ts, ta O
4. [&(t)= #(kt) fork = positive integer Q
Controllability & Observability .
le to do whatever
put, the system must be

ae to if it is possible by
sfer the system from any initial

Controllability: Controllability can be defined in ordg
we want with the given dynamic system under cQg
controllable. A system is said to be controllable@

means of an unconstrained control vector tgstug
state to any other state in a finite intervalo @

Condition for Controllability;

If therank of Cs =[B:AB: equal ton], then the system is
controllable.
Observability: In order tis going on inside the system under
observation, the system must’be observable. A system is said to be observable
at time to if, with thelgystgm’in state X(to), it is possible to determine this state
from the observ f he output over a finite interval of time.
Condition servability;
=[CT:ATCT: ..... AT)™'CT is equal to n], then the system is sail
rvable
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