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Basics of Control Systems 

Control Engineering 

Basically, Control engineering is applicable to aeronautical, chemical, 
mechanical, environmental, civil, and electrical engineering which is based on the 
foundations of feedback theory and linear system analysis, and it generates the 
concepts of network theory and communication system theory. 

Hence according to the theory of control engineering, it is not limited to any 
engineering discipline but applicable to the different areas which require the 
control process for their functioning & Stable Operations. 

 

Open Loop Control System 

• An open-loop control system consists of a control actuator or controller to 
receive the desired response. 

• It uses a switching device to control the process directly without using any 
device. 

• An illustration of an open-loop control system is an electric toaster. 
• In Open Loop Controlling action, there is no feedback system present to 

sense the error in the desired output. 

 

Closed-Loop Control System 

• In a closed-loop control system, it consists of an additional measure of the 
actual output to compare the actual output with the desired output 
response. 

• This additional measure of the output is called the feedback signal. 
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• A feedback control system that set out to maintain the relationship of one 
system variable to another by comparing the functions of these variables 
and using the difference as a means of control. 

• Since the system becomes more complex, the interrelationship of many 
controlled variables may be considered in the control scheme. 

• An example of a closed-loop control system is a person steering (or 
driving) an automobile by looking at the auto’s location on the road and 
making the appropriate adjustments. 

 

TEMPERATURE CONTROL SYSTEMS 

• In the electric furnace, the temperature is measured by a thermometer, 
which is an analog device. 

• The analog temperature converted to digital temperature using an A/D 
converter. The digital temperature is then fed to a controller through an 
interface. 

• The digital temperature is then compared with the programmed input 
temperature, and if there is any error, the controller then sends out a signal 
to the heater, through an amplifier, interface, and relay to bring the furnace 
temperature to the desired value. 

 

Comparison between Open Loop & Closed Loop Control System  

Feature Open Loop Control System Closed-Loop Control System 
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Effect of Output on 
Input 

No effect on input. The output signal affects the 
controller output into the 
system. 

Stability Very Stable The response changes with 
the change in the input 
signal. 

Response to 
external 
disturbances 

No reaction to disturbances.  The 
open Loop control works on fixed 
output. 

The output of the controller 
adjusts itself in response to 
the input signal. 

Ease of 
Construction 

The controller is easy to 
construct. 

The controller is difficult to 
construct as it is complex. 

Cost Cheap Expensive 
Bandwidth Small Bandwidth Large Bandwidth 
Maintenance Low Maintenance More Maintenance is 

required.  
Feedback There is no Feedback Feedback is always present. 

Block Diagram Reduction technique  

Need for Block Diagram Reduction:- Some of the block diagrams are complex, 
such that the evaluation of their performance required simplification (or 
reduction) of the block diagrams which is done by the block diagram 
rearrangements. 

Advantages of Block Diagram reduction 

• Its very simple to construct the block diagram for complicated systems. 
• Single, as well as the overall performance of the system, can be studied by 

using transfer functions shown in the block diagram. 
• The overall closed-loop transfer function can be calculated easily using 

block diagram laws. 
• The function of the individual element can be visualized with the help of 

block diagram. 

Components of Linear Time-Invariant Systems  
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Rules of Block Diagram reduction Technique 

• Cascade series 
Connection 

 

 

• Parallel Connection  

 

 

• Block Diagram Algebra for Summing Junctions 
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• Block Diagram Algebra for Branch Point 

 

 

Basic Rule For Block Diagram Transformation 
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Meson's Gain Formula 

The objectives for this technical note are: 

• Define the key terms describing signal-flow graphs. 
• Draw signal flow graphs for a block diagram. 
• Draw a block diagram from a signal-flow graph. 
• List down the steps in the process to solve a system using Mason’s gain 

formula. 
• Apply Mason’s gain formula to systems in block diagram or signal-flow-

graph form. 

Basic Definition Related to Meson's Gain Formula 

• Forward paths: Forward paths are continuous paths through the graph 
from the input to the output. No node is passed more than once. 
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• Feedback loops: Feedback loops are continuous paths through the graph 
that starts and end at the same node. 

• Path gain: Path gain is the product of the signal gains encountered on the 
path. 

• Loop gain: Loop gain is the product of signal gains encountered in a 
feedback loop. 

• Source node: Source nodes are nodes with only outgoing branches. 
• Sink nodes: Sink nodes are nodes with only incoming branches. 

    Mesons gain Formula Statement 

   

• PK represents the path gain for the kth forward path. 
• Δ =1-(∑ Sum of all individual loop gains) +(∑ sum of products of all pairs of 

loop gains,(non-touching loops) )-  (∑ sum of products of all triples of loop 
gains,(Non-touching loops))+ ... 

• Δk = Δ-(∑ loop gains in Δ that touch forward path k) 

• Linear System:  Essentially a Linear system is one that follows the 
principle of Superposition & Homogeneity in their response to the system. 

        Consider a system with the input f(t) and output x(t) 

 

Now if the input is changed to g(t), the output is y(t) 

 

If the system is linear, then an input of h(t)=g(t)+f(t) yields an output z(t)=x(t)+y(t) 
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• Example of a nonlinear system:  Now consider the same situation when 
the system is nonlinear for example a squaring function. 

 

Now we can not find the output to the complex function h(t) by adding the 
responses of the systems to the simpler function. 

 

• Time-Invariant: In the time-invariant system, the physical parameters of 
the system do not change with time.  The classic example of a non-time 
invariant (or time-variant) system is a rocket whose mass changes with 
time (a time-invariant rocket would have constant mass). 

• Continuous-Time:  The Continuous-time systems are time is a continuous, 
or real-valued, variable.  On the other hand, discrete-time systems have 
time that moves in discrete steps.  

        Examples of discrete-time systems include weekly closing stock prices 
(updated weekly), the sound on a standard audio CD (updated 44,100 times per 
second). 

Analogous System 

 An analogous electrical and mechanical system has differential equations of the 
same kind. There are two analogies that are used to go between the electrical 
and mechanical systems. 

Page 9 of 86

www.jk
ch

rom
e.c

om

9  www.jkchrome.com www.jkchrome.com www.jkchrome.com



 

To understand the analogy more clearly. The parameters for the mechanical 
analogous are formed by substituting the analogous parameters into the 
equations for the electrical elements. For example, by Ohm's law for electrical 
circuit e=iR. For the Mechanical analog  I, e is replaced by v, I by f and R by 1/B, 
which yields v=f/B. 
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Force-Current 'F-I' Analogy (Electrical to Mechanical) 

Kirchoff's Current Law and D'Alemberts Law (with inertial forces included) are 
helpful for converting an electrical circuit to a mechanical system. 
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Procedure for Conversion from Electrical to Mechanical. 

• Start with an electrical circuit. Label all node voltages. 
• Write a node equation for each node voltage. 
• Rewrite the equations using analogous making substitutions from the 

table, with each electrical node being replaced by a position. 
• Draw the mechanical system that interconnects with the equations. 

Example: Draw the mechanical equivalent circuit of the given system. 

 

Solution: By following the steps in the given Procedure 
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Alternative method: Another way from electrical to mechanical simply redrawing 
the electrical circuit using mechanical components. 

• Draw over the circuit, replacing electrical elements with their analogous; 
voltage sources by input velocities, current sources replaced by force 
generators, resistors with friction elements, inductors with springs, and 
capacitors (which must be grounded) by masses. Each node becomes a 
position (or velocity) 

• Label positions, currents, and the mechanical elements as they were in 
original electrical circuits. 
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Force-Current 'F-I' to Electrical to Mechanical 

The procedure for Mechanical to Electrical analogy is simply the reverse of 
Electrical to Mechanical analogy.  Either a mathematical method can be used as 
in the previous example, Electrical to Mechanical conversion can be understood 
by reading the table from bottom to top, or by the method where force generators 
are replaced by current sources, friction elements by resistors, springs by 
inductors, and masses by capacitors (which are grounded).  Each position 
becomes a node in the circuit. 

Procedure for 'F-I' analogy for Electrical to Mechanical Conversion 

• Start with the mechanical system. Label all positions. 
• Draw the circuit by replacing mechanical elements with their analogous; 

force generators by current sources, input velocities by voltage 
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sources,  friction elements by resistors, springs by inductors, and masses 
by capacitors (which are grounded). Each position becomes a node. 

• Label the nodes and electrical elements as they were in the original 
mechanical system. 

 

Force-Voltage 'F-V' Analogy (From Electrical to Mechanical) 

The important relationship when converting from a circuit to the Mechanical 
analog is that between Kirchoff's Voltage Law and D'Alemberts Law (with inertial 
forces included). 

 

Procedure for Conversion from Electrical to Mechanical 

• Start with an electrical circuit. Label all currents. Choose the currents so 
that only one current flows through the inductors. 

Page 15 of 86

www.jk
ch

rom
e.c

om

15  www.jkchrome.com www.jkchrome.com www.jkchrome.com



• Write loop equations for each loop. 
• Rewrite the equations using analogs, making substitutions from the table, 

with each electrical loop being replaced by a position. 
• Draw the mechanical system that interconnects with the equations. 

Example: Draw the Mechanical equivalent system of the Electrical Circuit. 

 

Solution: By following the procedure given for force voltage analogy. 
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Rotating Mechanical Systems 

Gear System 

The gear system performs many functions, here we look at the gears that 
increase or decrease angular velocity (while simultaneously decreasing or 
increasing torque, such that energy is conserved).   

• If we consider two gears in equilibrium and in contact with each other,  
• we can obtain very useful relationships. 

Page 17 of 86

www.jk
ch

rom
e.c

om

17  www.jkchrome.com www.jkchrome.com www.jkchrome.com



 

• First, we note the geometric relationship that concludes from the path that 
the arc lengths along their circumference must be equal to the gear's turn. 

 

Since the arc lengths (shown with a heavy blue line) must be equal ⇒ arc 
length⇒ r1θ1 = r2θ2  arc length 

• Now we can derive the second relationship from a torque balance. Here we 
must define a force between the gears termed a "contact force."This force 
must be equal and opposite across the interface between the two gears, 
but its direction is arbitrary. 

 

Since the contact force is tangent to both gears and so produces a torque equal 
to the radius times of the force. 

 

We can have a torque balance on each of the two gears 

 For Gear 1: torque T1 = fcr1 or fc = T1/r1 & For Gear 2: torque T2 = fcr2 or fc = T2/r2 
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From the above two equation we concluded that fc = T1/r1 = T2/r2 

• In the system below, a torque (Ta), is applied to gear 1 (with a moment of 
inertia J1).  It, in turn, is connected to gear 2 (with a moment of inertia J2) 
and a rotational friction Br.  The angle θ1 is defined as positive clockwise, 
θ2 is also defined as positive clockwise. The torque acts in the direction of 
θ1. 

 

• We start by drawing free body diagrams, including a contact force that we 
will arbitrarily choose to be down on J1 and up on J2.  The directions of the 
reactive forces due to inertia and friction are chosen, and as always, 
opposite to the defined positive direction. 

 

This yields the two equations of motion 

Ta + fcr1 - J1θ1 =0  

fcr2-J2θ2 +Brθ2 = 0 

• We can easily solve for fc and eliminate it from the above equations, but we 
also need to eliminate θ2. To do this, we use the relationship between 
θ1 and θ2 (from equal arc lengths). 

r1θ1 = -r2θ2 

• Note that we have a negative sign here because of the way θ1 and θ2 were 
defined (if θ1 moves in the positive direction, then θ2 is negative).  When 
you use the arc length expression, you must be careful of the signs. 

        fcr2-J2θ2 - Brθ2 = 0 
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        and   θ2 = - r1/r2(θ1) 

we can we write it as fcr2-J2{r1/r2(θ1)} =0  

         fc = -J2{r1/(r2)2} θ1 - Br {r1/(r2)2} θ1 

We can put this into the equation for J1 and solve (in standard form with the 
output (θ1) on the left, and the input (Ta) on the right. 

         Ta + fcr1 - J1θ1 =0  

        or     Ta +[-J2{r1/(r2)2} θ1 - Br {r1/(r2)2}θ1r1] - J1θ1 =0 

        or    {J1+ J2(r1/r2)2}θ1 + Br(r1/r2)2}θ1 = Ta 

        So we get θ1 = r2/r1(θ2)  &  ω1 = r2/r1(ω2) 

        & Since from the relation T1= r1/r2(T2) 

we concluded that  

           T1ω1 = {r1/r2(τ2)}{r2/r1(ω2)} = T2ω2  

           T1ω1 =T2ω2   

Transfer Function 

Transfer Function 

The Transfer Function (TF) of a System is the ratio of the output to the input of a 
system, in the Laplace domain considering its initial conditions and equilibrium 
point to be zero. 

If we have an input function of X(s), and an output function Y(s), we define the 
transfer function H(s). 
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Impulse Response 

Since we know that in the time domain, generally, we define the input to a system 
as x(t) and the output of the system as y(t). The relationship between the input 
and the output is represented as the impulse response, h(t). 

We can use the following equation to define the impulse response: 

 

• The Impulse Function, denoted with δ(t) is a function defined piece-wise as 
follows 

 

• An examination of the impulse function shows that it is related to the unit-
step function as follows 

u(t)= ∫δ(t)   or   

• The impulse response (IR) must always satisfy the following condition, or 
else it is not a true impulse function 

 

Convolution in Time Domain 

If we have the system input and the impulse response of the system, we can 
calculate the system output using the convolution operation as such as 

y(t)=h(t)∗x(t). 

Time-Invariant System Response 

If the system is time-invariant, then the general description of the system can be 
replaced by a convolution integral of the system's impulse response and the 
system input. We can call this the convolution description of a system. 
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Convolution Theorem 

• Convolution in the time domain turns into multiplication in the complex 
Laplace domain. 

• Multiplication in the time domain turns into convolution in the complex 
Laplace domain. 

L[f(t)∗g(t) ]=F(s)G(s) 

L[f(t)g(t) ]=F(s)∗G(s) 

Result: If the complex Laplace variable is s, then we generally denote the transfer 
function of a system as either G(s) or H(s). If the system input is X(s), and the 
system output is Y(s), then the transfer function can be defined as such 

 

• So if we know the input to a given system, and we have the transfer 
function of the system, we can solve for the system output by multiplying 
as 

Y(s)=H(s)X(s) 

Example: Impulse Response 

• Since we know that the Laplace transform of the impulse function, δ(t) is 
L[δ(t)]=1  

• So, when we put this into the relationship between the input, output, and 
transfer function, we get 

Y(s)=X(s)H(s) 

or Y(s)=(1)H(s) 

or Y(s)=H(s) 

       In other words, the "impulse response" is the o/p of the system when we 
input an impulse function. 
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Transfer Functions for Linear Systems 

Consider a linear input/output system described by the controlled differential 
equation 

 

where u is the input and y is the output. 

• To obtain the transfer function of the system of the last equation let us 
input be u(t) = est. 

• Since the system is linear, there is an output of the system that is also an 
exponential function  ⇒ y(t) = Yoest.  

• Inserting the signals into the last equation, we find 

(sn +a1sn−1 +···+an)yo.est = (bosm +b1sm−1···+bm)e−st 

• And the response of the system can be completely described as  

a(s) = sn +a1sn−1 +···+an &  b(s) = bosm +b1sm−1 +···+bm 

  

• So the transfer function of the given function is given by   

  

Transfer Function Alternative Method 

To investigate how a linear system responds to the exponential input u(t) = est we 
consider the state space system 

 

Let the input signal be u(t) = est and assume that s ≠ λi(A),  where i = 1,...,n, where 
λi(A) is the ith eigenvalue of A. then 
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Since s ≠ λ(A) the integral can be evaluated and we get 

 

       & Output y(t) = Cx(t) + Du(t)  

      = CeAt{x(0)−(sI −A)−1B}+[D+C(sI−A)−1B]est 

Note: One term of the output is proportional to the input u(t) = est. This term is 
called the pure exponential response. 

• If the initial state is chosen as   x(0) = (sI −A)−1B  
• the output only consists of the only exponential response and both the 

state and the output are directly proportional to the input 

x(t) = (sI −A)−1Best = (sI −A)−1Bu(t) 

y(t) = [C(sI −A)−1B+D]est = [C(sI−A)−1B+D]u(t). 

• The ratio of the output and the input 

G(s) = C(sI −A)−1B +D is the transfer function of the system. 

• For Homogeneous Equation i.e; D=0 then              

G(s) = C(sI −A)−1B  is the transfer function of the system. 

The Concept of Pole & Zero 

• Poles and Zeros of a transfer function are the frequencies for which the 
value of the transfer function becomes infinity or zero respectively. 

• The transfer function has many useful explanations and the features of a 
transfer function are often associated with important system properties. 
Three of the most important features are the gain and the locations of the 
poles and zeros. 
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• In the above equation, N(s) and D(s) are simple polynomials in s. Zeros are 
the roots of N(s) by setting N(s)=0 and solving for s. Poles are the roots of 
D(s), by setting D(s)=0 and solving for s. 

• In general Transfer Function must not have more zeros than poles, we can 
state that the polynomial order of D(s) must be greater than or equal to the 
polynomial order of N(s). 

Effects of Poles and Zeros 

• when s approaches a zero (Zeros of Transfer function), the numerator of 
the transfer function N(s)→0. 

• When s approaches a pole (Poles of Transfer 
Function) the denominator of the transfer function D(s)→0 & the value of 
the transfer function approaches infinity. 

• An output value of infinity should raise an alarm bell for people who are 
familiar with BIBO stability.   

• Poles & Zeros of a transfer function are represented in S-Plane, In s-
plane s = σ±jω  where σ represent the attenuation on X-axis 
& ω  represents the angular velocity represented on the y-axis. 

• In the s-plane, the Poles are located by a cross (*) & the Zeros are located 
by dot (.)   

 

• For a Stable System, All the Poles & Zeros of a Transfer Function must be 
lie in the left half of the s-plane. 

Page 25 of 86

www.jk
ch

rom
e.c

om

25  www.jkchrome.com www.jkchrome.com www.jkchrome.com



 

Note: If the Poles or Zero lie on the imaginary axis then it must be simple (order 
only 1) then the system is said to be Marginally Stable, If the Order of multiplicity 
of Poles or Zeros on Imaginary Axis is more than 1 in that case system will 
become Unstable. 

Time Domain Analysis 

The Time Domain Analyzes of the system is to be done on basis of time. The 
analysis is only be applied when the nature of the input plus the mathematical 
model of the control system is known. Expressing the main input signals is not 
an easy task and cannot be determined by simple equations. There are two 
components of any system’s time response, which are: Transient response & 
Steady-state response. 

• Transient Response: This response is dependent upon the system poles 
only and not on the type of input & it is sufficient to analyze the transient 
response using a step input. 

•  Steady-State Response: This response depends on system dynamics and 
the input quantity. It is then examined using different test signals by the 
final value theorem. 
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Standard Test Input Signals 

 

Time-Response of First-Order System 

Here consider the armature-controlled dc motor driving a load, such as a 
videotape. The objective is to drive the tape at a constant speed. Note that it is 
an open-loop system.   
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• ωss(t) is the steady-state final speed. If the desired speed is ωr, choosing 
'a=ωr/k1km' the motor will eventually reach the desired speed.     

   

• From the time response e-t/τ
m we concluded that for t≥5τm the value of e-

t/τm is less than 1% of its original value. Hence the speed of the motor will 
reach and stay within 1% of its final speed at 5-time constants. 

Let us now consider the closed-loop system  

 

 

 

If r(t) = a then Response would be ;  w(t) = ak1ko- ak1koe-t/τ
o 

 If a is properly chosen, the tape can reach the desired speed. It will reach the 
desired speed in 5τo seconds. Here τo=τm.So that we can control the speed of 
response in the feedback system. 

Ramp response of first-order system 
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  ess(t)= τo  

•  Thus, the first-order system will track the unit ramp input with a steady-
state error τo, which is equal to the time constant of the system. 

Time-Response of Second-Order System 

 

• Consider the antenna position control system. Its transfer function from r 
to y is, 

 

where we can define  

(ωn)2 = k1k2km/τm ; & 2ξωn = 1/τm 

The constant ξ is called the damping ratio and ωn is called the natural frequency. 
The system above is, in fact, a standard second-order system. 

The transfer function T(s) has two poles and no zero. Its poles are, 
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Natural frequency (ωn):  The natural frequency of a second-order system is the 
frequency of oscillation of the system without damping. 

Damping ratio (ξ):  The damping ratio is defined as the ratio of the damping 
factor σ, to the natural frequency ωn. 

Here,σ is called the damping factor,ωd is called damped or actual frequency. The 
location of poles for different ξ are plotted in the given figure below. For ξ=0, the 
two poles ±jωn are purely imaginary. If0<ξ<1, the two poles are complex 
conjugate.  

 

Unit Step Response of Second-Order System 
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Second-Order Systems: General Specification 

The second-order system exhibits a wide range of responses that must be 
analyzed and described. To become familiar with the wide range of responses 
before formalizing our discussion, we take a look at numerical examples of the 
second-order system responses shown in the figure.  

•  Underdamped Response (0<ξ<1) 

This function has a pole at the origin that comes from the unit step and two 
complex poles that come from the system. The sinusoidal frequency is given the 
name of damped frequency 
of oscillation, ωd. This response is shown in the figure called underdamped. 

Example: 

 

• Overdamped System (1<ξ) 

 This function has a pole at the origin that comes from the unit step input and 
two real poles that come from the system. The input pole at the origin generates 
the constant forced response; each of the two system poles on the real axis 
generates an exponential natural frequency. 

Example:  
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• Undamped Response (ξ= 0) 

 This function has a pole at the origin and two imaginary poles. The pole at the 
origin generates the constant forced response, and the two system poles on the 
imaginary axis at ±j3 generate a Sinusoidal natural response. 

Example: 

 

• Critically Damped Response (ξ = 1) 

 This function has a pole at the origin and two multiple real poles. The input pole 
at the origin generates the constant forced response, and two poles at the real 
axis at -3 generate a natural exponential response. 
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Note: In the above specifications of time domain, don't be confused with the 
number of Poles in G(s), to Specify for which type of Damping is present for a 
particular case we consider the total number of poles are of transfer function 
i.e; C(s)/R(s). 

Summarization: Here once again we summarize the second-order damping 
functions as; 
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Time Domain Characteristics 

In specifying the Transient-Response characteristics of a control system to a unit 
step input, we usually specify the following: 
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• Delay time ( td ): It is the time required for the response to reach 50% of the 
final value in the first attempt. 

• Rise time, ( tr ): It is the time required for the response to rise from 0 to 
100% of the final value for the underdamped system. 

• Peak time, ( tp ): It is the time required for the response to reach the peak 
of time response or the peak overshoot. 

• Settling time, ( ts ): It is the time required for the response to reach and 
stay within a specified tolerance band ( 2% or 5%) of its final value. 

• Peak overshoot ( Mp): It is the normalized difference between the time 
response peak and the steady output and is defined as 

• Steady-state error ( ess ): It indicates the error between the actual output 
and desired output as ‘t’ tends to infinity. 

 

 

 

 

 

Steady-state error ess: It is found previously that steady-state error for a step 
input is zero. Let us now consider ramp input,  r(t)= tu(t). 

 

• Therefore, the steady-state error due to ramp input is 2ξ/ωn. 

Effect of Adding a Zero to a System:  
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If we add a zero at s = -z be added to a second-order system. Then we have, 

 

• The multiplication term is adjusted to make the steady-state gain of the 
system unity. 

        Manipulation of the above equation gives, 

• The effect of the added derivative term is to produce a pronounced early 
peak to the system response. 

• The closer the zero to the origin, the more pronounce the peaking 
phenomenon. 

• Due to this fact, the zeros on the real axis near the origin are generally 
avoided in design. However, in a sluggish system, the artful introduction of 
a zero at the proper position can improve the transient response. 

Types of Feedback Control System:  

The open-loop transfer function of a system can be written as 

• If n = 0, the system is called type-0 system, if n = 1, the system is called 
type-1 system, if n = 2, the system is called type-2 system, etc. 

Steady-State Error and Error Constants: 

The steady-state performance of a stable control system is generally judged by 
its steady-state error to step, ramp, and parabolic inputs. For a unity feedback 
system, 

 

It is seen that steady-state error depends upon the input R(s) and the forward 
transfer function G(s). 
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Time Domain Characteristics 

In specifying the Transient-Response characteristics of a control system to a unit 
step input, we usually specify the following: 

 

• Delay time ( td ): It is the time required for the response to reach 50% of the 
final value in the first attempt. 

     The expression of delay time, td for second-order system is: 
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• Rise time, ( tr ): It is the time required for the response to rise from 0 to 
100% of the final value for the under-damped system. 

     The expression of rise time, tr for second-order system is: 

      

• Peak time, ( tp ): It is the time required for the response to reach the peak 
of time response or the peak overshoot. 

     The expression of peak time, tp for second-order system is: 

      

• Settling time, ( ts ): It is the time required for the response to reach and 
stay within a specified tolerance band ( 2% or 5%) of its final value. 

     The expression of settling time, ts for second-order system is: 
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• Peak overshoot (Mp): It is the normalized difference between the time 
response peak and the steady output and is defined as 

 

     The expression of peak overshoot, Mp for second-order system is: 

      

• Steady-state error ( ess ): It indicates the error between the actual output 
and desired output as ‘t’ tends to infinity. 

 

Effect of Adding a Zero to a System:  

If we add a zero at s = -z be added to a second-order system. Then we have, 

Page 39 of 86

www.jk
ch

rom
e.c

om

39  www.jkchrome.com www.jkchrome.com www.jkchrome.com



 

• The multiplication term is adjusted to make the steady-state gain of the 
system unity. 

        Manipulation of the above equation gives, 

 

• The effect of the added derivative term is to produce a pronounced early 
peak to the system response. 

• The closer the zero to the origin, the more pronounced the peaking 
phenomenon. 

• Due to this fact, the zeros on the real axis near the origin are generally 
avoided in design. However, in a sluggish system, the artful introduction of 
a zero at the proper position can improve the transient response. 

 

Types of Feedback Control System:  

The open-loop transfer function of a system can be written as 
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• If n = 0, the system is called type-0 system, if n = 1, the system is called 
type-1 system, if n = 2, the system is called type-2 system, etc. 

Steady-State Error and Error Constants: 

The steady-state performance of a stable control system is generally judged by 
its steady-state error to step, ramp and parabolic inputs. For a unity feedback 
system, 

 

Where, 

E(s) is error signal 

R(s) is input signal 

G(s) H(s) is the open loop transfer function 

 

It is seen that steady-state error depends upon the input R(s) and the forward 
transfer function G(s). 

1. If input is unit step i.e R(t) = u(t) 
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2. If input is unit ramp i.e R(t) = tu(t) 

 

Page 42 of 86

www.jk
ch

rom
e.c

om

42  www.jkchrome.com www.jkchrome.com www.jkchrome.com



 

3. If input is unit parabolic i.e R(t) = 0.5tu(t) 

  

Frequency Domain Analysis 

In a feedback control system, at least part of the information used to change the 
output variable is derived from measurements performed on the output variable 
itself. This type of closed-loop control is often used in preference to open-loop 
control (where the system does not use output-variable information to influence 
its output) since feedback can reduce the sensitivity of the system to externally 
applied disturbances and to changes in system parameters. 
Familiar examples of feedback control systems include residential heating 
systems, most high-fidelity audio amplifiers, and the iris-retina combination that 
regulates light entering the eye.  
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Closed-loop control system: 

• Sometimes, we may use the output of the control system to adjust the 
input signal.  This is called feedback.  Feedback is a special feature of a 
closed-loop control system. 

• A closed-loop control system compares the output with the expected 
result or command status, then it takes appropriate control actions to 
adjust the input signal. 

• Therefore, a closed-loop system is always equipped with a sensor, which is 
used to monitor the output and compare it with the expected result. 

The following figure shows a simple closed-loop system. 

• The output signal is feedback to the input to produce a new output. 
• A well-designed feedback system can often increase the accuracy of the 

output. 

 

Block diagram of a closed-loop control system 

Feedback can be divided into positive feedback and negative feedback.   

Positive Feedback: 

• Positive feedback causes the new output to deviate from the present 
command status. 

• For example, an amplifier is put next to a microphone, so the input volume 
will keep increasing, resulting in a very high output volume. 

Negative Feedback: 

• Negative feedback directs the new output towards the present command 
status, so as to allow more sophisticated control. 

• For example, a driver has to steer continuously to keep his car on the right 
track. 
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Most modern appliances and machinery are equipped with closed-loop control 
systems. Examples include air conditioners, refrigerators, automatic rice 
cookers, automatic ticketing machines, etc. An air conditioner, for example, uses 
a thermostat to detect the temperature and control the operation of its electrical 
parts to keep the room temperature at a preset constant.   

 

Block diagram of the control system of an air conditioner 

• One advantage of using the closed-loop control system is that it is able to 
adjust its output automatically by feeding the output signal back to the 
input. 

• When the load changes, the error signals generated by the system will 
adjust the output.  However, closed-loop control systems are generally 
more complicated and thus more expensive to make. 

• Feedback is a common and powerful tool when designing a control 
system. 

• The feedback loop is the tool that takes the system output into 
consideration and enables the system to adjust its performance to meet a 
desired result of the system. 

In any control system, the output is affected due to a change in environmental 
conditions or any kind of disturbance. So one signal is taken from the output and 
is fed back to the input. This signal is compared with reference input and then an 
error signal is generated. This error signal is applied to the controller and output 
is corrected. Such a system is called a feedback system. 
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• When the feedback signal is positive then the system called a positive 
feedback system. For a positive feedback system, the error signal is the 
addition of reference input signal and the feedback signal. 

• When the feedback signal is negative then the system is called a negative 
feedback system. For a negative feedback system, the error signal is given 
by the difference of reference input signal and the feedback signal. 

Feedback characteristics: Including feedback into the control of a system results 
in the following. 

Advantages: 

• Increased accuracy. The output can be made to reproduce the input 
• Reduced sensitivity to system characteristics 
• Reduction in the effect of non-linearities 
• Increased bandwidth. The system can be made to respond to a larger 

range of input frequencies. 

The major disadvantages resulting from feedback are the increased risk of 
instability and the additional cost of design and implementation. 

Applications of Feedback: Flight control systems, Robotics, Chemical process 
control, Communications & Networks, Automotive, Biological Systems, 
Environmental Systems & Quantum Systems. 

Rule to Draw the Root Locus Plot 

Rule 1-Symmetry: Since the characteristic equation has real coefficients, any 
zeros must occur in complex conjugate pairs (which are symmetric about the 
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real axis).  Since the root locus is just a diagram of the roots of the characteristic 
equation as K varies, it must also be symmetric about the real axis. 

Rule 2-Number of Branches: Since the order of the characteristic equation is the 
same as that of the denominator of the loop gain, the number of branches is n, 
the order of the denominator polynomial. 

Rule 3- Starting and Ending Points: Start from the magnitude 
condition: K|N(s)/D(s)| =1 

• So the locus starts (when K=0) at poles of the loop gain, and ends (when 
K→∞) at the zeros. Note: there are q zeros of the loop gain as s→∞. 

Rule 4- Locus On The Real Axis: The locus exists on the real axis to the left of 
a sum of the number of poles and zeros is odd on the axis. 

Rule 5- Number of Branches Terminating to Infinity: If for a given system the 
number of Open Loop Poles are P & the number of Open Loop Zeros are Z then 
there will be "P-Z" branches which are terminating to Infinity.  

Rule 6- Asymptotes Angle & Centroid: We know that if we have a characteristic 
equation P(s) that has more poles (P=N) than zeros (Z=M) then "N−M" of the root 
locus branches tend to zeros at infinity. 

These asymptotes intercept the real axis at a point, Called it Centroid σA, 

 

Or in other words  

 

• The angles of the asymptotes φk are given by for K>0 

    

where, q = 0, 1, 2, ..., n – m – 1. 
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• The angles of the asymptotes φk are given by for K<0 

 

where, q = 0, 1, 2, ..., n – m – 1. 

Rule 7-Determining the Breakaway Points:  

• First of all, we have to identify the portions of the real axis where a 
breakaway point must exist. 

• Assuming we have already marked the segments of the real axis that are 
on the root locus, we need to find the segments that are the part of the 
root locus by either two poles or two zeros (either finite zeros or zeros at 
infinity). 

• To estimate the values of s at the breakaway points, the characteristic 
equation ⇒ 

•  1 + KP(s) = 0 is rewritten in terms of K as 

             

To find the breakaway points we find the values of s corresponding to the 
maxima in K(s). i.e. where dK/ds = K'(s) = 0. 

• As the last step, we check the roots of K'(s) that lie on the real axis 
segments of the locus. The roots that lie in these intervals are the 
breakaway points. 

Rule 8- Find the angles of departure/arrival for complex poles/zeros:  

•  The angle of departure (θd) is given by θd = 180° + arg [G(s )H(s 
) where arg [G(s )H(s)] is the angle of G(s)H(s) excluding the pole where 
the angle is to be calculated. 

• Similarly, the angle of arrival is given by θa = 180° - arg [G(s)H(s)], where 
arg [G(s)H(s)] is the angle of G(s)H(s) excluding the zero, where the angle 
is to be calculated. 

• When there are complex poles or zeros of P(s), the root locus branches will 
either depart or arrive at an angle θ where, for a complex pole or zero at s = 
p or s = z, 
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where  

 

In other words 

 

Therefore, exploiting the rules of complex numbers, we can rewrite ∠P∗(p)and 
∠P∗(z) as 

 

Rule 9- Intersection of the Root Locus with the jω Axis: To find the intersection 
of root locus with the imaginary axis. The following procedures are followed 

Step 1: Construct the characteristic equation 1+ G(s) H(s) = 0 

Step 2: Develop Routh array in terms of K. 
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Step 3: Find Kmar that creates one of the roots of the Routh array as a row of 
zeros. 

Step 4: Frame auxiliary equation A(s) = 0 with the help of the coefficient of a row 
just above the row of zeros. 

Step 5: The roots of the auxiliary equation A(s) = 0 for K = Kmar give the 
intersection points of the root locus with the imaginary axis. 

Value Gain Margin: 

Grain Margin (GM) = 

  

Note: If the root locus does not cross the jω axis, the gain is ∞. GM represents 
the maximum gain that can be multiplied for the system to be just on the verge 
of instability. 

Phase Margin: Phase margin (PM) can be determined for a given value of K as 
follows 

• Calculate ω for which |G (jω) H (jω)| = 1 for the given value of K. 
• Calculate [G (jω) H (jω)] 
• Phase margin = 180° + arg [G (jω) H (jω)] 

Routh-Hurwitz Stability Criterion 

The technique Routh-Hurwitz criterion is a method to know whether a linear 
system is stable or not by examining the locations of the roots of the 
characteristic equation. The method determines only if there are roots that lie 
outside of the left half-plane; while it does not actually compute the roots. 

Here we have a Transfer Function F(s): 

 

where N(s) & D(s) are the Polynomials in s to know the Poles (by equating D(s)= 
0) & Zeros (by equating N(s)=0). 
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The Characteristic Equation of the above Transfer Function can be written as  

1+G(s)H(s) = 0 ; or D(s)= ansn+an-1sn-1 + ........a1s + ao =0  

To find out whether the system is stable or not, check the following conditions: 

1. Two necessary but not sufficient conditions that all the roots have negative 
real parts are 

• All the polynomial coefficients must have the same sign. 
• All the polynomial coefficients must be non-zero. 

2. If condition (1) is satisfied, then compute the Routh-Hurwitz array as follows 

 

• where the ai are the polynomial coefficients, these coefficients in the rest 
of the table are computed as follow: 

 

• The necessary condition that all roots have negative real parts is that all 
the elements of the first column of the array have the same sign. 

• The number of changes of sign equals the number of roots with positive 
real parts. 

Special Case-1: Zero First-Column Element 

•  If the first element of a row is zero, but some other elements in that row 
are nonzero. Here we can replace the zero elements with "ε", & complete 
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the table, and then interpret the results assuming that "ε" is a small 
number of the same sign as the element above it. The results must be 
interpreted in the limit as ε→0 

Special Case-2: If Complete Zero Row. 

• Whenever all the coefficients in a row are zero, a pair of roots of equal 
magnitude and the opposite sign will be present. 

• Here the Possibilities of these two roots could be Real or Conjugate 
Imaginary with equal magnitudes and opposite signs. 

• The zero row is replaced by taking the coefficients of dP(s)/ds, where P(s), 
called the auxiliary polynomial, is obtained from the values in the row 
above the zero row. The pair of roots can be found by solving dP(s)/ds = 0. 

• It is to be noted that the auxiliary polynomial always has even degree. 

Example: Use of Auxiliary Polynomial 

Consider the quintic equation A(s) = 0 where A(s) is 

s5+2s4+24s3+48s2-50=0 

Solution: The Routh array starts off as 

 

The auxiliary polynomial P(s) will be 

P(s) = 2s4 + 48s2 − 50 

which shows that A(s) = 0 must have two pairs of roots of equal magnitude and 
opposite sign, which are also roots of the auxiliary polynomial equation P(s) = 0. 

Considering derivative of P(s) with respect to s we get ⇒ dP(s)/ds = 8s3 + 96s. 

so the s3 row is as shown below and the Routh array will be 
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• Now there is a single change of sign in the first column of the resulting 
array, indicating that there A(s) = 0 has one root with a positive real part. 

On Solving the Auxiliary Polynomial 2s4 + 48s2 − 50 = 0 it yields the remaining 
roots such as  

• s2 = 1 ⇒ s= ±1 
•  s2 = -25 ⇒ s = ± j5 
• so the original equation can be factored as ⇒ (s + 1)(s − 1)(s + j5)(s − j5)(s 

+ 2) = 0. 

Relative Stability Analysis 

• The Routh’s stability criterion provides the answer to the question 
of absolute stability. This, in many practical cases, is not sufficient. We 
usually require information about the relative stability of the system. 

• A real approach to examine relative stability is to shift the s-plane, here we 
substitute s = z − σ (σ = constant) into the characteristic equation, write 
the polynomial in terms of z and then apply Routh’s stability criterion to the 
new polynomial in z. 

• The number of changes of sign in the first column of the array of 
Polynomial in z is equal to the number of roots which are located to the 
right of the vertical line s =−σ. Thus, this test reveals the number of roots 
which lie to the right of the vertical line s = −σ2 

Jury Stability Test:  

According to Jury stability test:  

If   

Then  
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Where 

 

This system will be stable if 

 

 

 

Example: Verify Jury Stability Test for the given Polynomial. 

 

hence the system is stable. 

Various Plots 
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Bode Plot 

The bode plot gives a graphical method for determining the stability of a control 
system based on sinusoidal frequency response. Bode graphs are 
representations of the magnitude and phase of G(j*ω) (where the frequency 
vector ω contains only positive frequencies). 

The bode plot consists of two graphs: Magnitude plot and Phase plot 

• 20 log10 |G (jω)| versus logω, this is called the magnitude plot. 
• Phase shift (in degrees) versus logω (frequency), is called phase plot. 
• Bode plots are asymptotic log magnitude and phase plots. These are 

drawn as straight lines. 
• The corner frequency is the frequency at which the slope of the asymptotic 

log magnitude plot changes. 
• The frequency band from ω1 and ω2 such that (ω2/ω1) = 10 is called a 

decade. 
• For a first-order factor, the slope of the Log magnitude plot changes by ±20 

dB/decade at the corner frequency according to as the factor is in the 
numerator or denominator respectively. For a second-order factor, the 
slope changes by ±40 dB/decade and so on. 

Initial Slope of the Bode Plot: Initial slope can be determined by the type of the 
system, Its value is different for different types of system. 

• Type 0 system: For this system, the initial slope is 0 dB/decade with dB 
value 20 log K. 

• Type 1 system: For this system, the initial part of the system is 
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• Type 2 system: For type 2 system, the initial part of the plot is 

 

Here, the initial slope is -40 dB/decade and plot cuts the 0 dB line at  

 

Phase Margin and Gain Margin 

The PM and GM can be calculated by considering the following plot 
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• Gain Crossover Frequency: Frequency at which magnitude plot crosses 
the 0 dB line. 

• Phase Crossover Frequency: Frequency at which phase plot crosses the -
180° line 

• Gain Margin: Value of gain from gain plot at phase crossover frequency is 
called gain margin. Gain margin is positive if it is below zero dB line 

• Phase Margin: Value of phase from phase plot at the gain crossover 
frequency is known as phase margin. Phase margin is positive if it is above 
-180° line 

Minimum Phase, Non-minimum Phase and All Pass Transfer Function 

• Minimum phase transfer function:  

 

• Non-minimum phase system:  

 

• All pass transfer functions:  
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• If there are no poles of the transfer function at the origin, the initial slope of 
the LM plot is zero and the magnitude is 20 log Kp up to the lowest corner 
frequency. 

• If there is a single pole at the origin of the open loop transfer function the 
LM plot has an initial slope equal to -20 dB/decade up to the lowest corner 
frequency and if this line is extended, it will intersect the frequency axis at 
ω = kv. 

• If there are two poles at the origin of the open loop transfer function, the 
LM plot has an initial slope equal to -40 dB/decade up to the lowest corner 
frequency and this line is extended will intersect the frequency axis 

at . 
• If there is one zero at the origin, the LM plot has an initial slope equal to 20 

dB/decade up to the lowest corner frequency. If there are two zeros at the 
origin, the LM plot has an initial slope equal to +40 dB/decade up to the 
lowest corner frequency and so on 

• Multiplication of the transfer function by a gain factor is equivalent to 
shifting the LM plot vertically up by an equivalent gain in dB. 

Effects of Addition of Poles: The effects of addition of poles are as follows 

• There is change in shape of the root locus and it shifts towards the 
imaginary axis. The intercept on the jω axis occurs for a lower value of K 
because of asymptote angle being lower down. 

• System becomes oscillatory. 
• Gain margin and relative stability decrease. 
• There is reduction in the range of K. 
• A sluggish response can be changed to a quicker response for the artful 

introduction of a pole. 
• Settling time increases. 

Effects of Addition of Zeros: The effects of addition of zeros are as follows 

• There is change in shape of the root locus and it shifts towards the left of 
the s-plane. 

• Stability of the system is enhanced. 
• Range of K increases. 
• Settling time speeds up. 

Polar Plot 
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The polar plot of a sinusoidal transfer function G(jω) is a plot of the magnitude of 
G(jω) versus the phase angle of G(jω) on polar coordinates as ω varied from 
zero to infinity. 

Procedure to Sketch the Polar Plot: 

• Step-1: Determine transfer function G(jω). 
• Step-2: Put s = jω in the transfer function to obtain G(jω). 
• Step-3: At ω = 0 and m = ∞, calculate | G(jω)| 

by  and . 
• Step-4: Calculate the phase angle of G(jω) at ω = 0 and ω = ∞ 

by  and . 
• Step-5: Rationalize the function G(jω) and separate the real and imaginary 

axis. 
• Step-6: Equate the imaginary part Im|G(jω)| to zero and determine the 

frequencies at which plot intersects the real axis and calculate the value of 
G(jω) at the point of intersection by substituting the determined value of 
frequency in the expression of G(jω). 

• Step-7: Equate the real part Re|G(jω)| to zero and determine the 
frequencies at which plots intersects the imaginary axis and calculate the 
value G(jω) at the point of intersection by substituting the determined 
value of frequency in the rationalized expression of G(jω). 

• Step-8: Sketch the polar plot with the help of the above information. 

Polar Plot of Some Standard Functions: 

• Type 0 System 
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• Type 1 System 

 

• Type 2 System 
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Introduction of Additional Pole 

 

 

Polar Plot for 
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Polar Plot For 

  

 

Gain Margin and Phase Margin with Polar Plot 
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• Phase Crossover Frequency: The frequency at which the polar plot 
crosses the -180° line is called the phase crossover frequency. 

• Gain Crossover Frequency: The frequency at which the polar plot crosses 
the unit circle is called gain crossover frequency. 

• Gain Margin: At phase crossover frequency, if the gain is 'a' then 

Gain margin = - 20 log a 

• Phase Margin (φm): At gain crossover frequency, if the phase is φ then 
phase margin 

φm = 180 + φ 

       where, φ is positive from anti-clockwise direction. 

Nyquist Stability Criterion 

A stability test for time-invariant linear systems can also be derived in the 
frequency domain. It is known as the Nyquist stability criterion. It is based on the 
complex analysis result known as Cauchy’s principle of argument. Nyquist 
criterion is used to identify the presence of roots of a characteristic equation of a 
control system in a specified region of the s-plane. The nyquist approach is the 
same as Routh-Hurwitz but, it differs with the following aspect:- 

• The open loop transfer function "G(s)H(s)" is considered instead of closed 
loop characteristic equation " 1+G(s) H(s) = 0". 

• Inspection of the graphical plot of G(s) H(s) enables to get more than yes 
or no answer of Routh-Hurwitz method pertaining to the stability of control 
system. 
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• Nyquist plots display both amplitude and phase angle on a single plot, 
using frequency as a parameter in the plot. 

• Nyquist plots have properties that allow you to see whether a system is 
stable or unstable. It will take some mathematical development to see 
that, but it's the most useful property of Nyquist plots. 

Concept of Encirclement & Enclosement 

Encirclement: 

 

• point A is encircled in the counter in Counter Clock Wise by closed path, 
while point B is NOT encircled by closed path. 

Enclosement: A point or region is said to be enclosed by a closed path if the 
point or region lies to the right of the path when the path is traversed in any 
prescribed direction. 

 

Page 64 of 86

www.jk
ch

rom
e.c

om

64  www.jkchrome.com www.jkchrome.com www.jkchrome.com



• In figure (a) point A is not enclosed by the path, while Point B is 
enclosed by the path. 

• In figure (b) point A is enclosed by the path, while point B is not 
enclosed by the path. 

Nyquist Stability Criterion: Fundamentals 

Consider the phasor from point A to S1 of encirclement = N, the net angle 
traversed by the phasor = 2πN rad 

 

• In figure (a) Point A of encirclement = +1; Point B of encirclement = +2. 
• In figure (b) Point A of encirclement = -1; Point B of encirclement = -2. 

Determination of N: 
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• For a SISO feedback system, the closed-loop transfer function is given by 

 

• closed-loop system poles are obtained by solving the following equation 

       1+G(s)H(s) =0 =Δ(s) represents the system characteristic equation. 

• In the following, we consider the complex function 

D(s) = 1+G(s)H(s) 

• The zeros of D(s) are the closed-loop poles of the transfer function. Here 
now we concluded that the poles of D(s) are the zeros of M(s). 

• At the same time, the poles of D(s) are the open-loop control system poles 
since they are contributed by the poles of H(s)G(s), which can be 
considered as the open-loop control system transfer function—obtained 
when the feedback loop is open at some point. 

• The Nyquist stability test is obtained by applying the Cauchy principle of 
argument to the complex function D(s). First, we state Cauchy’s principle 
of argument. 

Cauchy’s Principle of Argument 

• Let F(s) be an analytic function in a closed region of the complex s-plane, 
except at a finite number of points (namely, the poles of F(s)). 

• It is also assumed that F(s) is analytic at every point on the contour. Then, 
as 's' travels around the contour in the s-plane in the clockwise direction, 
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the function F(s) encircles the origin in the [ReF{(s)}, Img{F(s)}]-plane in 
the same direction N times, where N is given By 

N= P-Z 

       where Z and P stand for the number of zeros and poles (including their 
multiplicities) of the function F(s) inside the contour. 

• The above result can be also written as  

Arg {F(s)} = (Z-P)2π = 2Nπ 

 

Nyquist Plot 

The Nyquist plot is a polar plot of the function D(s) = 1+ G(s)H(s) when travels 
around the contour 

 

• The contour in the above figure covers the whole unstable half-plane of the 
complex plane s, R→∞. 
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• Since the function D(s), according to Cauchy’s principle of argument, must 
be analytic at every point on the contour, the poles D(s) of on the imaginary 
axis must be encircled by 
infinitesimally small semicircles. 

Nyquist Criterion:  

• It states that the number of unstable closed-loop poles is equal to the 
number of unstable open-loop poles plus the number of encirclements of 
the origin of the Nyquist plot of the complex function F(s). 

• The above criterion can be slightly simplified if instead of plotting the 
function "D(s) = 1+G(s)H(s)", we plot only the function G(s)H(s) and count 
encirclement of the Nyquist plot of G(s)H(s) around the point (-1+j0).  

• The number of unstable closed-loop poles (Z) is equal to the number of 
unstable open-loop poles (P) plus the number of encirclements (N) of the 
point (-1+j0) of the Nyquist plot of G(s)H(s), that is 

Z= P+N 

Phase and Gain Stability Margins 

Two important notions can be derived from the Nyquist diagram: phase and gain 
stability margins. The phase and gain stability margins are presented in the 
Figure below 

 

• They give the degree of relative stability; in other words, they tell how far 
the given system is from the instability region. Their formal definitions are 
given by 
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• where ωgc and ωpc stand for, respectively, the gain and phase crossover 
frequencies, which are obtained from the figure as  

 

 

Example: Consider a control system represented by 

 

Solution: Since this system has a pole at the origin, the contour in the -plane 
should encircle it with a semicircle of an infinitesimally small radius. This contour 
has three parts (a), (b), and (c). Mappings for each of them are considered below. 

•  On this semicircle, the complex variable 's' is represented in the polar form 
by 's = Rejψ' with R→∞, - π/2 ≤ ψ ≥ π/2. Substituting 's = 
Rejψ' into G(s)H(s), we easily see that G(s)H(s)→0. Thus, the huge 
semicircle from the -plane maps into the origin in the -plane. 

         Thus, the huge semicircle from the s-plane maps into the origin in 
the G(s)H(s)-plane. 
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• On this semicircle, the complex variable is represented in the polar form by 
's = rejψ' with r→0, - π/2 ≤ ψ ≥ π/2. so that we have 

 

     Since φ changes from  '- π/2' at point A to ' π/2' at point B, arg{G(s)H(s)} will 
change from "π/2 to -π/2". We conclude that the infinitesimally small semicircle 
at the origin in the s-plane is mapped into a semicircle of infinite radius in 
the G(s)H(s)-plane. 

• On this part of the contour, s takes pure imaginary values, i.e.  s= 
jω with ω  changing from'-∞ to +∞'.Due to symmetry, it is sufficient to 
study only mapping along "0+≤ ω ≥+∞". We can find the real and imaginary 
parts of the function G(jω)H(jω), which are given by 

 

From the above expressions, we see that neither the real nor the imaginary parts 
can be made zero, and hence the Nyquist plot has no points of intersection with 
the coordinate axis. For ω= 0+ we are at point B and since the plot at  ω= +∞ will 
end up at the origin. Note that the vertical asymptote of the Nyquist plot is given 
by 

{Re G(jo±)H(jo±)} = -1 
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• From the Nyquist diagram we see that N= 0 and since there are no open-
loop poles in the left half of the complex plane, i.e.P=0, we have Z =0 so 
that the corresponding closed-loop system has no unstable poles. 

Controllers & Compensators 

Compensation Technique 

In Control Engineering we generally focused on methods used to analyze the 
performance of a feedback system with a given set of parameters. The results of 
such analysis frequently show that the performance of the feedback system is 
unacceptable for a given application because of such deficiencies as low De-
sensitivity, slow speed of response, or poor relative stability. 

The process of modifying the system to improve performance is called 
Compensation. 

The required device added in the control system to obtain the performance as 
per the desired specification is known as Compensator. 

Phase lead Compensation: 

A phase lead compensator improves the transient response of the system. As 
the name implies, this network provides a positive or leading phase shift of the 
output signal relative to the input signal at all frequencies. Lead-network 
parameters are usually selected to locate its singularities near the crossover 
frequency of the system being compensated. The positive phase shift of the 
network then improves the phase margin of the system.  

 

A phase-lead compensator has a transfer function of the form:  
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Where, 

 

 

• A Lead Compensator is a high-pass filter. 
• Zeros of the transfer function dominate in Phase Lead Compensation 

Technique. 

 

Phase lag Compensation: Phase-lag systems are very common. These systems 
occur when an energy storage unit and an energy dissipator are combined. One 
example is the RC low pass. The phase-lag compensator has a negative phase 
angle and so is used to subtract phase from an uncompensated system. 
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A phase-lag compensator has a transfer function of the form:  

 

Where, 

 

  

Because the phase-lag compensator adds a negative phase angle to a system, 
the phase lag is not a useful effect of the compensation and does not provide a 
direct means of improving the phase margin. The phase-lag compensator does, 
however, reduce the gain and so can be used to lower the crossover frequency. A 
consequence of this is that, usually, the phase margin of the system is higher at 
the lower frequency, the stability can be improved. 

In other words, there should not be much change in the location of the dominant 
poles. The pole of a phase lag compensator lies extremely close to the origin and 
its zero is to the left of the pole and very near to it. 
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Phase lag lead Compensation: With single lag or lead compensation use, we may 
not be satisfied with design specifications. For an unstable uncompensated 
system, lead compensation provides a faster response but does not provide 
enough phase margin whereas lag compensation stabilizes the system but does 
not provide enough bandwidth. So we need multiple compensators in cascade 
i.e. phase lag- lead compensation. 

It acts as a band stop filter 
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Controlling Action 

• The controller (an analog/digital circuit, and software), is trying to keep the 
controlled variable such as temperature, liquid level, motor velocity, robot 
joint angle, at a certain value called the setpoint (SP). 

• A feedback control system does this by looking at the error (E) signal, 
which is the difference between where the controlled variable (called 
the process variable (PV)) is, and where it should be. 

• Based upon the error signal, the controller decides the magnitude and the 
direction of the signal to the actuator. 

The proportional (P), the integral (I), and the derivative (D), are all basic 
controllers. 

Types of controllers: P, I, D, PI, PD, and PID controllers 

• Proportional Control 

With proportional control, the actuator applies a corrective force that is 
proportional to the amount of error: 

Outputp = Kp × E 

Outputp = system output due to proportional control 

Kp = proportional constant for the system called gain 

E = error, the difference between where the controlled variable should be and 
where it is. E = SP – PV. 
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One way to decrease the steady-state error is to increase the system gain (Kp), 
but high Kp can lead to instability problems. 

Increasing Kp independently without limit is not a sound control strategy. 

• Integral Control 

The introduction of integral control in a control system can reduce the steady-
state error to zero. Integral control applies a restoring force that is proportional to 
the sum of all past errors, multiplied by time. 

OutputI = KI × ∑(E×Δt) 

OutputI = controller output due to integral control 

KI = integral gain constant (sometimes expressed as 1/TI) 

∑(E×Δt) = sum of all past errors (multiplied by time) 

For a constant value of error ∑(E×Δt) will increase with time, causing the 
restoring force to get larger and larger. 

Eventually, the restoring force will get large enough to overcome friction and 
move the controlled variable in a direction to eliminate the error. 

• Derivative Control 

One solution to the overshoot problem is to include derivative control. Derivative 
control ‘applies the brakes,’ slowing the controlled variable just before it reaches 
its destination. 

Page 76 of 86

www.jk
ch

rom
e.c

om

76  www.jkchrome.com www.jkchrome.com www.jkchrome.com



OutputD = controller output due to derivative control 

KD = derivative gain constant 

 = error rate of change (slope of error curve) 

• Combining P, I, and D controllers 

As proportional, integral and derivative controllers have their individual strengths 
and weaknesses, they are often combined so that their strengths are maximized, 
whilst minimizing their weaknesses. Many industrial controllers are a 
combination of P + I, or P + D, and are referred to as PI and PD controllers 
respectively. 

• PID control 

A proportional–integral–derivative controller (PID controller) is a generic control 
loop feedback mechanism (controller) widely used in industrial control systems. 

A PID controller attempts to correct the error between a measured process 
variable and a desired setpoint by calculating and then outputting a corrective 
action that can adjust the process accordingly. 

 

The foundation of the system is proportional control. Adding integral control 
provides a means to eliminate steady-state error, but increases overshoot. 
Derivative control increases stability by reducing the tendency to overshoot. 

Simply adding together the three required control components generates the 
response of the PID system. 
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Output PID = output from PID controller 

KP = proportional control gain 

KI = integral control gain 

KD = derivative control gain 

E = error (deviation from set point) 

∑(E×Δt) = sum of all past errors (area under the error/time curve) 

 = 

rate of change of error (slope of the error curve) 

Equation is: 

 

 

When you are designing a PID controller for a given system, follow the steps 
shown below to obtain the desired response. 

1. Obtain an open-loop response and determine what needs to be improved. 
2. Add a proportional control to improve the rise time. 
3. Add a derivative control to improve the overshoot. 
4. Add an integral control to eliminate the steady-state error. 
5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response. 

The characteristics of P, I, and D controllers 

• A proportional controller (Kp) will have the effect of reducing the rise time 
and will reduce, but never eliminate, the steady-state error. 

• An integral control (Ki) will have the effect of eliminating the steady-state 
error, but it may make the transient response worse. 

• A derivative control (Kd) will have the effect of increasing the stability of 
the system, reducing the overshoot, and improving the transient response. 
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State Space Analysis 

The so-called state-space description provides the dynamics as a set of coupled 
first-order differential equations in a set of internal variables known as state 
variables, together with a set of algebraic equations that combine the state 
variables into physical output variables. 

State: The state of a dynamic system refers to a minimum set of variables, 
known as state variables, that fully describe the system. 

• A mathematical description of the system in terms of a minimum set of 
variables, xi(t), i = 1,...,n, together with knowledge of those variables at an 
initial time t0, and the system inputs for time t ≥ t0, is sufficient to predict 
the future system state and outputs for all time t>t0. 

 

• The dynamic behavior of a state-determined system is completely 
characterized by the response of the set of n variables xi(t), where the 
number n is defined to be the order of the system. 

• The system shown in the above figure has two inputs u1(t) and u2(t), 
and four output variables y1(t),...,y4(t). If the system is state-determined, 
knowledge of its state variables (x1(t0), x2(t0),...,xn(t0)) at some initial 
time t0, and the inputs u1(t) and u2(t) for t ≥ t0 is sufficient to determine all 
future behavior of the system. 
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• The state variables are an internal description of the system which 
completely characterize the system state at any time t, and from which any 
output variables yi(t) may be computed. 

The State Equations 

The standard mathematical form of the system is expressed as a set of n 
coupled first-order ordinary differential equations, known as the state equations, 
in which the time derivative of each state variable is expressed in terms of the 
state variables x1(t),...,xn(t) and the system inputs u1(t),...,ur(t). In the general case 
the form of the n state equations is: 

 

• where  = dxi/dt and each of the functions fi (x, u, t), (i = 1,...,n) may be a 
general nonlinear, time-varying function of the state variables, the system 
inputs, and time. 

• It is common to express the state equations in a vector form, in which the 
set of n state variables is written as a state vector x(t)=[x1(t), x2(t),...,xn(t)]T, 
and the set of r inputs is written as an input vector u(t)=[u1(t), 
u2(t),...,ur(t)]T. Each state variable is a time-varying component of the 
column vector x(t). 

• In vector notation the set of n equations in Eqs. (1) maybe written as 

 

       where f (x, u, t) is a vector function with n components fi (x, u, t).      

 

     where the coefficients aij and bij are constants that describe the system. 

The last equation can be written in matrix form as below 
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which may be summarized as: 

 

• Where state vector x is a column vector of length n, the input vector u is a 
column vector of length r, A is an n × n square matrix of the constant 
coefficients aij , and B is an n × r matrix of the coefficients bij that weight 
the inputs. 

Output Equations 

System output is defined to be any system variable of interest. An arbitrary 
output variable in a system of order n with r inputs may be written as 

y(t) = c1x1 + c2x2 + ... + cnxn + d1u1 + ... + drur 

where the ci and di are constants. If a total of m system variables are defined as 
outputs, then the output equation can also be obtained as State Equation in 
compact form 

y = Cx + Du 

• where y is a column vector of the output variables yi(t), C is an m×n matrix 
of the constant coefficients cij that weight the state variables, and D is an 
m × r matrix of the constant coefficients dij that weight the system inputs. 

• For many physical systems, the matrix D is the null matrix, and the output 
equation reduces to a simple weighted combination of the state variable 

if D= 0 ; then   Y = Cx 

Block Diagram Representation of Linear Systems Described by State Equations 

A system of order n has n integrators in its block diagram. The derivatives of the 
state variables are the inputs to the integrator blocks, and each state equation 
expresses a derivative as a sum of weighted state variables and inputs. A 
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detailed block diagram representing a system of order n may be constructed 
directly from the state and output equations as follows: 

 

• Draw n integrator (S−1) blocks, and assign a state variable to the output of 
each block. 

• At the input to each block (which represents the derivative of its state 
variable) draw a summing element. 

• Use the state equations to connect the state variables and inputs to the 
summing elements through scaling operator blocks. 

• Expand the output equations and sum the state variables and inputs 
through a set of scaling operators to form the components of the output. 

Example: Draw a block diagram for the general second-order, single-input single-
output system 

 

the block diagram shown below is drawn using the four steps described above 
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Transformation from Classical Form to State-Space Representation 

Let the differential equation representing the system be of order n, and without 
loss of generality assume that the order of the polynomial operators on both 
sides is the same. 

(ansn + an−1sn−1+ ··· + a0)Y(s) =(bnsn + bn−1sn−1 + ··· + b0)U(s) 

• We may multiply both sides of the equation by s−n to ensure that all 
differential operators have been eliminated 
 
an+ an−1s−1 + ··· + a1s−(n−1) + a0s−nY(s) =bn+bn−1s−1 + ··· + b1s−(n−1)+ ··· + 
b0s−nU(s) 

from which the output may be specified in terms of a transfer function. If we 
define a dummy variable Z(s), and split into two parts 

 

Eq. of Z(s) can ne be solved for U(s) 

U(s) = (an + an−1s−1 + ··· + a1s−(n−1) + a0s−nX(s) 

State-Space and Transfer Function 
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The state equation form 

    

can be transformed into transfer function. 

Tanking the Laplace transform and neglect initial condition then 

sX(s)- X(0) = AX(s)+BU(s) 

y(s) = CX(s) + DU(s) 

then  sX(s)-AX(s)= X(0)+BU(s) 

By Neglecting Initial Conditions  

(sI-A)X(s) = BU(s) 

X(s) = (sI-A)-1 BU(s) 

Then Put the value of X(s) for Y(s)... 

then Y(s) = C(sI-A)-1BU(s)+ DU(s) 

 Y(s)/U(s) = G(s) = C(sI-A)-1B+D 

State-Transition Matrix 

The state-transition matrix is defined as a matrix that satisfies the linear 
homogeneous state 
equation: 

  

Let ϕ(t) be the n × n matrix that represents the state-transition matrix; then it 
must satisfy the 
equation: 
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Furthermore, let x(0) denote the initial state at t = 0; then ϕ(t) is also defined by 
the matrix 
equation: 

 

which is the solution of the homogeneous state equation for t ≥ 0. One way of 
determining ϕ(t) 
is by taking the Laplace transform on both sides of Eq. (i); we have 

 

Solving for X(s) from Eq. (v). we get 

 

where it is assumed that the matrix (s1 – A) is non-singular. Taking the inverse 
Laplace 
transform on both sides of Eq. (v) yields 

 

By comparing Eq.(iv) with Eq. (v), the state-transition matrix is identified to be 

 

An alternative way of solving the homogeneous state equation is to assume a 
solution, as in 
the classical method of solving linear differential equations. We let the solution 
to be 

 

for t ≥ 0, where eAt represents the following power series of the matrix At, and 
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Properties of State-Transition Matrices. 

Controllability & Observability 

Controllability: Controllability can be defined in order to be able to do whatever 
we want with the given dynamic system under control input, the system must be 
controllable. A system is said to be controllable at time t0 if it is possible by 
means of an unconstrained control vector to transfer the system from any initial 
state to any other state in a finite interval of time. 

Condition for Controllability; 

 If the rank of CB  = [ B : AB : ..... An-1B is equal to n ],  then the system is 
controllable. 

Observability: In order to see what is going on inside the system under 
observation, the system must be observable. A system is said to be observable 
at time t0 if, with the system in state X(t0), it is possible to determine this state 
from the observation of the output over a finite interval of time. 

Condition for Observability; 

 If the rank of OB  = [ CT : ATCT : ..... AT)n-1CT is equal to n],  then the system is sail 
to be Observable. 
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